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ABSTRACT 

 

 The modern portfolio theory, introduced by Harry Markowitz in 1952, is a mean-

variance (MV) model to evaluate a portfolio of assets, where the objective function is to 

maximize the expected return (mean) for a given risk (variance), or to minimize that risk 

for a given return. Given the Brazilian context of high volatility where the study case 

takes place, this paper aims to provide a framework for dealing with skewed and 

leptokurtic data, conditions that seems more present in emerging markets, deviating from 

normality assumptions of the classic Markowitz model. The objective of this paper, then, 

is to expand the model for higher order moments (evolving into a MVSK model with 

skewness and kurtosis analysis) and compare this apparently more robust model to the 

classic quadratic objective function of Markowitz. Along with the MVSK analysis, we 

add an information entropy variable in the model hoping to take into account asset’s 

informational efficiency and diversity, trying to encompass the high uncertainty intrinsic 

to market’s returns and to increment the models’ validity. By this means, we analyze the 

practical effectiveness and the complexity of creating such multi-objective portfolio 

model to see if we can indeed provide more information to the investor with the new 

framework. In particular, the results obtained by MVSKE from B3 case in the 2011-2019 

period shows fragile performance out-of-sample, but in good parallel with the markowitz 

benchmark. 

 

Key-words: Modern Portfolio Theory, Mean-Variance, Markowitz, MVSK model, 

MVSKE Portfolio, Information Entropy, Ibovespa. 
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1. INTRODUCTION 

 

1.1. Problem Context 

The construction of a portfolio model will always be a theme of greater importance 

in financial modeling. Given the fact that most models used to this day are still the very 

ones that opened this field of study in the 1950’s (such as Markowitz model of portfolio 

selection and CAPM model of asset pricing), and as the strong-form efficient market 

hypothesis gets increasingly contested by behavioral economists, new approaches to the 

model seems necessary. With the development of quantitative finance, more models arise 

trying to better explain market’s behavior. And in this thesis, we propose a statistical 

model based mostly around assets’ prices and its central moments, with a method that 

encompasses not only the classic risk-return duo, but also higher moments around the 

mean, which best explain asymmetry and tail risk.  And along with this, entropy is added 

to the variables, seeking to efficiently price the information efficiency of a portfolio of 

assets. 

The data used for the training set of our model was from the last decade on B3 

S.A. Exchange (Brazil Stock Exchange and Over-the-Counter Market; formerly 

BM&FBovespa), consisting of daily prices fluctuation from 2011 until 2018, extracted 

by Yahoo Finance. After the model’s training set and backtesting, we seek to validate our 

predictive model testing it on the 2018-2019 market, and then comparing with the 

Markowitz model as the benchmark, leading to conflicting but interesting results, better 

seen in the results section.  

1.2. Objectives and Study Limitations 

The main goal of this work is to gather the vast literature on portfolio modeling of 

higher order moments, and from that create a slightly modified model, one including the 

characteristics more observed in the Brazilian context (CAVALVANTE and ASSAF, 

2004), such as higher volatility and positive skewed distribution of returns. Since 

evidence suggests that stock exchanges in emerging markets are more volatile (ADCOCK 

and SHUTES, 2005) and less efficient (in EMH sense), showing a more asymmetric 

distribution of returns, investors inserted in such environments may need better tools to 

operate in this scenario. 
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Some of the study limitations are regarding utility theory. The standard concave 

utility function will be employed representing a risk-averse approach (ARROW, 1971), 

the same assumption used by Markowitz in his classic model and by many others after 

him. However, this model can have flaws on modeling investor’s preferences, as recent 

studies in behavioral economics’ prospect theory suggests (KAHNEMAN and 

TVERSKY, 1979). For example, the loss aversion characteristic of some investors cannot 

be defined by expected utility theory (not with a trivial function at least), since this would 

represent an asymmetrical and convoluted utility function, which is out of the scope of 

the model. Other examples of inconsistencies with expected utility theory and the risk 

aversion function are the reflection effect (different preferences whether the outcomes are 

losses or gains) and the certainty effect (to prefer a certain return at the expense of losing 

some expected value), both established by Kahneman and Tversky (1979). Consequently, 

their empirical findings contest the prior concepts of investor rationality, but our model 

won’t directly adress such aspects, focusing on the statistical aspects of price fluctuation 

and to which extent its asymmetry, that are out of classic models, can affect explained 

performance. 

Other limitations concerns computational and mathematical complexity about 

polynomial multi-objective functions (of 5th degree), what makes exponentially difficult 

to simulate for a big enough quantity of assets in the portfolio, depending on the tools 

used in the model. This kind of complexity goes out of the scope of the paper to be a 

management framework for investors to assemble a diversified and low-risk portfolio of 

assets in emerging countries.  

Another important limitation going in that same direction is due to the already 

large number of variables of the model. Which results in important aspects of assets that 

are left out, such as liquidity and transaction costs, as a trade-off situation. Since the main 

objective of study is to compare higher order moments against the classic model, the focus 

will be on skewness and kurtosis risk and information efficiency in Brazilian markets. 

Transaction costs as restraints in the portfolio model would be a good addition that 

unfortunately will be out of the scope presented, but stays as recommendations for future 

models. 

Finally, this study’s purpose is not to create a portfolio with sophisticated 

constraints or elaborate algorithms but simply to expand the knowledge on certain gaps 
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about higher order moments and the relation between assets’ risk and its informational 

efficiency.  

1.3. Hypothesis and research question 

 

The research’s aspiration is to investigate if the proposed model will add 

incremental value to the investor comparing to the classic models that relies on less 

information about assets’ characteristics. In creating this model, we will also be able to 

make assumptions about validity of the efficient-market hypothesis (EMH) contrasted 

with adaptive-market one (AMH) for the Brazilian paradigm. 
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2. LITERATURE REVIEW 

 

The bibliography review starts with a historical perspective on portfolio modern 

theory, going from Markowitz classic model to the most recent studies in the field. Then, 

the literature on information entropy is presented, with arguments for measuring market 

efficiency. In the end, fuzzy set theory is discussed (even though not present in our model 

in the first moment) as a valuable technique for better representing the return values of 

assets and used by some of the seminal works in the field. All this pieces together will be 

vital parts in the creation of our model, to be discussed in the methodology chapter. 

 

2.1. Historical Perspective 

One of the foundational works in the field of financial modeling is the 

Markowitz’s mean-variance model, the 1952 seminal work which opened that field of 

study in modern financial economics. The Harry Markowitz MV model is the basis for a 

variety of regression models as mentioned by Fang et al. (2008), including the most 

famous one, the Capital Asset Pricing Model (CAPM), elaborated by William Sharpe, 

from whom Markowitz shared the 1990’s Nobel in Economics for their pioneering work 

in financial economics theory. In fact, CAPM is uniquely a model for asset pricing in a 

context where investors have mean-variance efficient portfolios (KRAUS and 

LITZENBERGER, 1976). Both models work side by side. 

The HM model is a quadratic function model with the following assumptions: an 

investor must be risk averse (with the risk here represented by the variance of the expected 

returns). The investor is rational (therefore, portfolios that lies below the frontier will 

never be chosen, since they will always be dominated in risk-return by the ones on the 

frontier). And assets’ return are normally distributed. This last one is a vital assumption, 

in the sense that mean and variance are sufficient to describe return behavior (with no 

skewness or kurtosis asymmetry involved, which is hardly the case as suggested by Yang 

and Hung (2010). Leland (1999) showed that when normality and mean-variance 

preferences are violated, the market portfolio is mean-variance inefficient and the CAPM 

mismeasures the investment performance.  

On the other hand, what is not an assumption in neither case but represents ideas 

compatible with CAPM and Markowitz assumptions lies in the efficient market 
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hypothesis proposed by Fama (1965). The EMH categorized three hypothetical stages of 

efficiency: weak-form, semi-strong form and strong. In the weak form, prices reflect all 

information in historical data of assets’ return. In the semi-strong form, prices reflect all 

public information  available, including past returns or recent forecasts of future returns, 

like financial statements, information about the economy or any other relevant public 

information. In the strong form, prices would reflect not just public info but also private 

information from insiders (we can note that in the strong form, inside information 

wouldn’t have value since no way to search or process that information would yield 

abnormal returns, therefore, the acquisition cost of such information would be zero). 

Thus, it’s noticed that the strong-form is not reasonable to address markets present state. 

A better definition of EMH would be of prices reflecting all information in a way 

that the marginal benefit of using this information wouldn’t exceed the marginal cost of 

acquiring it. However, according to Shleifer (2000), economic theory does not indicate 

efficient financial markets, on the contrary: significant and systematic deviations in 

efficiency are expected, and such deviations can go for a long period.  

Going back to the mean-variance model, the main concept in Markowitz model is 

the Efficient Frontier, a segment in the risk-return spectrum where the optimal portfolio 

should be. Along this frontier, it is up to the investor to choose the portfolio that best suits 

their preferences for each combination of assets’ portfolio that makes the boundary. The 

Efficient Frontier is Pareto-Efficient in the sense that you will not find a better 

combination of risk and return altogether. Therefore, if an investor seeks higher returns, 

he has to increase his exposure to volatility, increasing the variance of such returns. It 

establishes how investors can make decisions that maximize returns for a given variance 

or how they minimize that variance for a given return, depending on where the investor’s 

preferences lies. 

With risk in the MV portfolio defined as the variance of the sum of all the assets 

in the portfolio, and observing statistical properties for central moments, we have the 

following equations for the risk and return of a portfolio consisting of two assets: 

𝐸(𝑅𝑝) = �̅�𝑝 = 𝑊𝑅𝑥 + (1 − 𝑊)𝑅𝑦     (2.1.1) 

𝜎𝑝
2 = 𝑊𝑥

2𝜎𝑥
2 + 𝑊𝑦

2𝜎𝑦 
2 + 2𝑊𝑥𝑊𝑦𝐶𝑜𝑣𝑥,𝑦     (2.1.2) 

𝜎𝑝
2 = 𝑊𝑥

2𝜎𝑥
2 + 𝑊𝑦

2𝜎𝑦 
2 + 2𝑊𝑥𝑊𝑦𝐶𝑜𝑟𝑟𝑥,𝑦𝜎𝑥𝜎𝑦    (2.1.3) 
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Where: 

�̅�𝑝 is the portfolio’s expected return; 

𝜎𝑝
2 is the portfolio’s variance; 

𝑊 is the weight of an asset ; 

𝐶𝑜𝑣𝑥,𝑦 or (𝜎𝑥,𝑦)  is the covariance between assets 𝑥, 𝑦.  

𝐶𝑜𝑟𝑟𝑥,𝑦 or (𝜌𝑥,𝑦) is the correlation between assets 𝑥, 𝑦. 

Seeing the equations above, we notice how often the concepts of covariance and 

correlation appears. One of the key insights behind Markowitz model is the importance 

of diversification (diversifiable risk). If the covariance between assets are negative 

(meaning a negative relationship between the returns of such assets), we notice that the 

overall variance of the portfolio of two assets reduces. In fact, as long as 𝜌𝑥,𝑦 < 1 , the 

standard deviation of a portfolio will be lower than the weighted average of the standard 

deviations of individual assets (and this concept can be expanded to a portfolio of any 

size). 

It can be noted that the contribution of an individual asset’s variance to the overall 

portfolio’s variance tends to zero when 𝑛 is big enough, with the covariance converging 

to the mean (contributing to the total risk of the portfolio). This implies in the 

diversification of individual risk reaching a limit, known as systemic risk, which is non-

diversifiable. This notion can be verified from another angle: if the number of assets in a 

portfolio grows in the direction of the number of assets in the market, it is expected that 

the total variance of the portfolio will converge to the variance of the market itself, the 

market risk (or systematic risk).  

Empirical tests by Evan and Archer (1968) shows that a number as lower as 16 

assets already makes for great diversification in the portfolio. In the reproduced graph 

below we can see the real tendency of  diversification shrinking idiosyncratic risk 

(denoted by the points on the graph, each one representing actual portfolios of different 

sizes with their individual standard deviations) converging to systematic risk as the 

portfolio size increases. 
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Figure 1 – Convergence of idiosyncratic risk to systematic risk 
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Source: adapted from EVANS and ARCHER, 1968 

 

Generalizing the mean and variance equations for 𝑛 assets: 

�̅�𝑝 = ∑ 𝑅𝑗
𝑛
𝑗=1 𝑊𝑗       (2.1.4) 

𝜎𝑝
2 = ∑ ∑ 𝑊𝑖

𝑛
𝑗=1 𝑊𝑗

𝑛
𝑖=1 𝐶𝑜𝑟𝑟𝑖,𝑗𝜎𝑖𝜎𝑗     (2.1.5) 

Formulating it, for example, as a general constraint minimization problem (to 

assist us in later steps with other operations research techniques) we have the following 

equation: 

Min  𝜎𝑝
2 = ∑ ∑ 𝑊𝑖

𝑛
𝑗=1 𝑊𝑗

𝑛
𝑖=1 𝐶𝑜𝑣𝑖,𝑗   (2.1.6) 

Subject to �̅�𝑝 ≥ ∑ 𝑅𝑗
𝑛
𝑗=1 𝑊𝑗 

          ∑ 𝑊𝑖 = 1,   𝑊𝑖 ≥ 0  

As we can see by the restrictions in the optimization function not allowing 

negative weights, this is a MV model without short-sales, where 𝑊𝑖 would assume 

negative values representing the fact of an asset being sold short. This positive constraint 

helps to avoid highly leveraged portfolios with large short positions for example. A 

sensitivity analysis comparing both options to see if there is distortions in short and long 

positions is a reasonable approach. In the figure below, we can see all of these options 

and how they play out in the construction of the portfolio. 

0,124 

0,12 

0,135 

0,127 

 

Estimated level of systematic risk = 0,1166 

 

Portfolio size 

𝛔𝒑𝒐𝒓𝒕𝒇𝒐𝒍𝒊𝒐 

0,18 

0,15 
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Figure 2 – Modified Capital Allocation Line with Efficient Frontier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: adapted from DOMINGUES, 2003 

 

 

A slightly modified curve representing a junction of Capital Allocation Lines 

(CAL) can be observed in the mean-variance graph above by the junction of lines formed 

by the points (0, 𝑟𝐹), (σ1, 𝜇1), (σ2, 𝜇2) and (σ𝑚𝑎𝑥, 𝜇𝑚𝑎𝑥). The possibility of borrowing 

expands the investor’s opportunity set from the efficient frontier’s red parabola to the 

right side of the Capital Allocation Line. Points between (σ1, 𝜇1) and (σ2, 𝜇2) represents 

a portfolio of risky assets only (and because of that, lies in the efficient frontier). The left 

side of CAL describes a indifference curve for conservative investors (high risk aversion), 

since we have a combination of risk-free assets (𝑟𝐹) with risky assets shaping the portfolio 

(each indifference curve represents a utility function, measuring the investor’s preference 

over a choice set). The right side of CAL above the efficient frontier parabola represents 

levered portfolios of super aggressive investors (low risk aversion), where short-sales 

occur. The dashed lines represents fixed Sharpe ratios tangent to (σ1, 𝜇1) and (σ2, 𝜇2), 

indicating relationships of reward to variability to be compared with the efficient frontier. 

Apart from being largely employed even to this day (in pure or enhanced 

versions), that are also criticisms concerning the Markowitz model. Michaud (1989) 

criticism of Markowitz articulates that unconstrained MV optimization can yield results 
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Risk 
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that are inferior to those of simple equal-weighting schemes (MICHAUD, 1989). 

However, one can argue that equal-weighting allocation can be done as some sort of 

rebalancing in the MV portfolio itself, with a model for portfolio selection of those stocks 

previously equally weighted (even if the model is replicating some index fund). In such 

circumstances, MV optimization is said to be superior to equally weighting arrangements 

in terms of integration of portfolio objectives with client constraints.  

In this regard, Demiguel (2009) went beyond and showed that the estimation 

window needed for the sample-based mean-variance strategy to outperform the 1/N 

equally weighted benchmark is around 3000 months for a portfolio with 25 assets and 

about 6000 months for a portfolio with 50 assets. That goes against even the most 

skeptical supporters of MPT, that usually advocates on a convergence of non normal 

investment returns to normality within a period of roughly 30 years due to the Central 

Limit Theorem. 

 

 

2.2. MVS Model 

The MVS model is an expected evolution of the MV model that incorporates 

skewness into the portfolio construction, creating a cubic utility function for portfolio 

selection alongside with a multidimensional efficient set. Evidence suggests that prior 

inconsistencies in the MV model can be attributed (along with other factors) to the 

omission of systematic skewness (KRAUS and LITZENBERGER, 1976). Skewed data 

also undermines the results of some statistical tools such as the analysis of variance 

(ANOVA) for example, since this estimation model assumes normality and 

homoscedasticity (homogeneity of variance across the distribution for its random 

variables), being better employed for balanced data with independence of observations. 

In this case, nonparametric tests are recommended (such as the Kruskal-Wallis test), since 

these tests do not assume anything about the parameters of the underlying distribution. 

 The utility function with risk averse features (non-increasing absolute risk 

aversion) and decreasing marginal utility of wealth applied in MV models are still 

accurate in MVS, as stated by Kraus and Litzenberger (1976), since aversion to increasing 

standard deviations and preference for positive skewness are common characteristics of 

investors modeled by such utility functions. Even Markowitz (1959) showed that 

nonquadratic utility functions can be locally approximated with a quadratic function. 
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Skewness is the degree to which returns are asymmetric around the mean. If the 

portfolio has positive skewness, this implies in several small negative returns and scarce 

but big positive ones (what explains investors’ preference for positive skewness). On the 

other hand, negative skewness means several small positive returns with rare but large 

losses in between (REGENSTEIN, 2018). 

A common misconception about skewness is its direct relation between mean and 

median of a distribution, as stated by Von Hippel (2005). That is correct for the concept 

of nonparametric skew (
𝜇−𝜗

𝜎
), a naiver notion that simply calculates the mean minus 

median over the standard deviation, not requiring prior knowledge about the distribution’s 

shape. Tabor (2010) declares this concept of nonparametric skew as a weak statistical tool 

for detecting shifts from normality (for example, a distribution with negative skew can 

have its mean greater than the median). 

 

Figure 3 – Older notion of nonparametric skew for unimodal examples 

 

 Source: DOANE, 2011 

 

The skewness (𝑆𝑝) formula is derived below: 

𝑆𝑝 =
∑ ∑ ∑ 𝐸(𝑅𝑖

𝑛
𝑘=1 𝑅𝑗

𝑛
𝑗=1 𝑅𝑘)𝑊𝑖𝑊𝑗𝑊𝑘

𝑛
𝑖=1

(∑ ∑ 𝑊𝑖
𝑛
𝑗=1 𝑊𝑗

𝑛
𝑖=1 𝐶𝑜𝑣𝑖,𝑗)3/2    (2.2.1) 

 

 

The third order multi-objective function of the portfolio selection will be: 

 

Min  𝜎𝑝
2(𝑥) = ∑ ∑ 𝑊𝑖

𝑛
𝑗=1 𝑊𝑗

𝑛
𝑖=1 𝐶𝑜𝑣𝑖,𝑗    
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Max  �̅� (x) = ∑ 𝑅𝑗
𝑛
𝑗=1 𝑊𝑗 

Max  𝑆𝑝(𝑥) =
∑ ∑ ∑ 𝐸(𝑅𝑖

𝑛
𝑘=1 𝑅𝑗

𝑛
𝑗=1 𝑅𝑘)𝑊𝑖𝑊𝑗𝑊𝑘

𝑛
𝑖=1

(∑ ∑ 𝑊𝑖
𝑛
𝑗=1 𝑊𝑗

𝑛
𝑖=1 𝐶𝑜𝑣𝑖,𝑗)3/2  

Subject to �̅�𝑝 ≥ ∑ 𝑅𝑗
𝑛
𝑗=1 𝑊𝑗 

          ∑ 𝑊𝑖 = 1,   𝑊𝑖 ≥ 0  

 

Some criticism attested to the MVS model (and that can be extended for the 

MVSK) is about the stability of the correlation matrix. In normal distributions, the 

correlation matrix covers all information about the statistical dependence between assets. 

However, this cannot be generalized for higher order moments, as stated by Canela and 

Collazo (2007), and not even for MV models when not resampled often enough to capture 

the differences in variance over time.   

Maringer and Parpas (2007) shows that even for a mean-variance-skewness space 

with a universe of feasible portfolios, the majority can be inefficient with the usual 

assumptions of risk aversion. That suggests MVS can be a less powerful model than one 

would consider given the increment in input data and complexity in comparison with 

output results. Maringer and Parpas focus on a single period model which generates an 

efficient surface of portfolios with every point on the surface corresponding to some 

investor’s preference. Their global optimization approach uses to algorithms: Differential 

Evolution (an evolutionary algorithm for continuous optimization) and Stochastic 

Differential Equation (a method that penalizes deviation from the feasible set). A critique 

of this model is that is very difficult to achieve convergence and diversity with genetic 

algorithms for multiobjective optimization problems (YUE; WANG, 2016). 

 

2.3. MVSK Model 

Here, we have the kurtosis added to the MVS model, a measure that describes the 

shape of a distribution’s tails in relation to its overall shape. Kurtosis is sometimes 

confused with a measure of peakedness of a distribution. A normal distribution has a 

kurtosis of 3, what means that some of its distribution’s mass is indeed in the tails. 

Consequently, excess kurtosis is another concept often used, that expresses kurtosis 

minus 3, comparing it to the Normal distribution. 
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A distribution with positive excess kurtosis is called leptokurtic and negative 

excess named platykurtic. According to Costa et al. (2005), financial markets’ variables 

show strong leptokurtic characteristics, what causes kurtosis risk when the model assumes 

normality (commonly referred as fat tail risk since leptokurtic distributions has fatter 

tails). 

High kurtosis of the return distribution implies that the investor will experience 

occasional extreme returns (either positive or negative, since more mass will be 

distributed in the left or right tails). That higher kutosis represents more extreme returns 

comparing to the usual three standard deviations from the mean (which accounts for 

99,73% of return outcomes according to the bell-shaped distribution). So, high kurtosis 

scenarios means less mass on the shoulders of the distribution and more on the tails, what 

the investor will try to minimize to reduce volatility. 

Adding kurtosis (𝐾𝑝) to the already presented MVS model, we have the following 

MVSK objective function: 

 

Min  𝜎𝑝
2(𝑥) = ∑ ∑ 𝑊𝑖

𝑛
𝑗=1 𝑊𝑗

𝑛
𝑖=1 𝐶𝑜𝑣𝑖,𝑗 

Max  �̅� (x) = ∑ 𝑅𝑗
𝑛
𝑗=1 𝑊𝑗 

Max  𝑆𝑝(𝑥) =
∑ ∑ ∑ 𝐸(𝑅𝑖

𝑛
𝑘=1 𝑅𝑗

𝑛
𝑗=1 𝑅𝑘)𝑊𝑖𝑊𝑗𝑊𝑘

𝑛
𝑖=1

(∑ ∑ 𝑊𝑖
𝑛
𝑗=1 𝑊𝑗

𝑛
𝑖=1 𝐶𝑜𝑣𝑖,𝑗)3/2  

Min  𝐾𝑝(𝑥) =  
∑ ∑ ∑ ∑ 𝐸𝑛

𝑙=1 (𝑅𝑖
𝑛
𝑘=1 𝑅𝑗

𝑛
𝑗=1 𝑅𝑘𝑅𝑙)𝑊𝑖𝑊𝑗𝑊𝑘𝑊𝑙

𝑛
𝑖=1

(∑ ∑ 𝑊𝑖
𝑛
𝑗=1 𝑊𝑗

𝑛
𝑖=1 𝐶𝑜𝑣𝑖,𝑗)2  

Subject to �̅�𝑝 ≥ ∑ 𝑅𝑗
𝑛
𝑗=1 𝑊𝑗 

∑ 𝑊𝑖 = 1,   𝑊𝑖 ≥ 0 

Araciolglu et al, (2011) constructed the MVSK portfolio allied with the 

polynomial goal programming (PGP) model for maximizing expected return and 

skewness and minimizing risk and kurtosis simultaneously of 30 stocks on Istanbul Stock 

Exchange. PGP is often used for multiple competing min-max portfolio objectives with 

successful empirical results. It is a nonlinear improvement of goal programming for 

higher orders, being a branch of multiobjective optimization that deals with such 

conflicting objective functions. Thus, the advantages of PGP consists in the existence of 

an optimal solution and the possibility of incorporating investor desires to the model, like 
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higher central moments, solving the trade-offs on conflicting objectives of maximizing 

return and skewness simultaneously on minimizing variance and kurtosis.  

Yue and Wang (2016), in its turn, presented a MVSK model with a new proposed 

algorithm designed to take into consideration population decomposition, crossover 

operations, selection strategy and update strategy seeking to achieve the two goals of 

convergence and diversity in the multiobjective optimization, what is difficult to achieve 

with goal programming techniques. Due to computational complexity, it was chosen only 

12 assets from Shanghai Stock Exchange. Their MVSK results outperformed the classic 

model in the tests provided; resulting in well-diversified Pareto optimal solutions, what 

illustrates the practicality and effectiveness of the proposed model.  

 

2.4. Information Entropy 

Information theory, originally proposed in Claude Shannon’s 1948 article “A 

mathematical theory of communication” studies the quantification, storage and 

communication of information. In this model, entropy is defined as the amount of 

uncertainty contained in a random variable or process.  

Shannon defined the entropy H of a discrete random variable as: 

𝐻(𝑥) =  ∑ 𝑃𝑖𝑙𝑜𝑔𝑏 (
1

𝑝𝑖
)𝑛

𝑖=1      (2.4.1) 

Where 𝑃𝑖 is the probability of the random variable and 𝑏 is the corresponding units of 

entropy (or bits). For an application in portfolio theory, 𝑃𝑖 is  

A way of thinking is that if the entropy of an information source reduces, we can 

ask fewer questions to guess the outcome, with Shannon’s bit acting as a measure of 

surprise that this information brings to the system (as in the amount of information that 

can be transferred, with the surprise value being the mean informational amount). 

When all events in a system had the same probability of occurrence, the entropy 

in that system is maximum, and therefore, the level of available information in that system 

will be minimum. So, high levels of entropy require vast amounts of information as well, 

in the way that information can reduce entropy. When predictability is introduced, the 

entropy goes down. 
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This concept of uncertainty is related to how much choice about an outcome there 

is in the selection of an event, providing measurement for this information in terms of 

probabilities, which can be applied for financial market information (PHILIPPATOS; 

WILSON, 1974).  

For non-normal distributions, entropy as a measure of uncertainty works well 

because it is more dynamic and general than variance and does not depend on normality 

assumptions, allowing its financial data to be modeled in any distribution (ZHOU, 2013). 

In another study called “A Portfolio optimization model based on information entropy 

and fuzzy time series” from 2015, Zhou investigates entropy risk models applying fuzzy 

forecasting, discussing its effectiveness in the Chinese financial market and how the new 

model outperformed the traditional ones. Our MVSKE model for the brazilian case will 

neither rely on fuzzy techniques, nor on FCM clustering algorithm but this difference 

would be interesting to compare in future works on brazilian markets in a fuzzy 

environment, to see if performance would change. 

FAMA (1965), and PHILIPPATOS & NAWROCKY (1973) already used the 

concepts of information entropy to test the hypothesis of market efficiency, analyzing the 

reaction of prices to the flow of information. BUCKLEY (1985) discusses the principles 

of minimum and maximum entropy, where maximum entropy is expected in a system 

where you know only a few bits of information but no further knowledge of it. If it were 

on a state of lower entropy it would contain more information than previously specified 

WEHRL (1978). 

The Principle of Maximum Entropy (MEP) was successfully implemented in 

option pricing as well. BUCHEN & KELLY (1996) created a significant method using 

MEP to estimate the maximum entropy distribution of assets, simulating their option 

prices at different strike values. 

In succession, CASSETTARI (2003) proposed a model for portfolio allocation 

based on the maximum entropy principle, where entropy acts as a measure of financial 

risk, comparing it to the classic Markowitz MV model, but instead of adding information 

entropy as another objective function, the author makes a mean-entropy model, pulling 

variance out of the model, showing interesting results for going out of mean-variance 

tautology critics.  
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Mutual information, a different form of conditional entropy model, is also used in 

new portfolio management approaches. Nassim Taleb (2020) mentions that metrics 

linked to entropy such as mutual information are vastly more potent than correlation, one 

of the reasons being the uncovering of nonlinearities. 

An advantage of the information entropy approach is that it does not make 

assumptions about normality of population’s parameters in the distribution. Moreover, in 

the case of continuous distributions, the entropy is sensitive to any oscillation in the 

variable, thus, being adequate to financial modeling (DIONÍSIO and MENEZES, 2003). 

 The case in favor of using Shannon Entropy for quantifying informational 

efficiency levels in financial markets is that symbolic analysis is useful in detecting the 

dynamic of highly noise time series as asset returns are, and the application of entropy 

recovers the information in the series detecting the formation of patterns (RISSO, 2009). 

Therefore, assuming that in an efficient market hypothesis (EMH) it is not possible to 

predict future prices using past prices, the probability of having positive (negative) returns 

the next day is ½, denoting maximum uncertainty about future predictions, what relates 

to Shannon maximum entropy. So, if IBOVESPA for example shows certain level of 

inefficiency, it will be measured by an H significantly less than 1.  

 Other aspect concerning models that uses entropy as an objective function to 

determine portfolio weights, is that such weights become automatically non-negative due 

to the mathematical formulation of entropy models (USTA and KANTAR, 2011). This 

means no short-selling, which is preferable most of the time, as stated by Zheng et al 

(2011). 

 

2.5. Fuzzy Set Theory 

One common critique of Markowitz’s mean-variance model is of 

underperforming out of sample (DEMIGUEL et al., 2009). If the samples do not truly 

mirror the population parameters of assets returns and volatility, one conceptual tool that 

can help reduce such real-world uncertainty is the fuzzy theory framework.  

Portfolio optimization under fuzziness also makes sense as management restraint 

tool (for example, as expecting a return over x% or a risk lower than y%), where the 

investor choice prevails for a desired risk-return preference (GUPTA et al., 2014). This 

is difficult to obtain with crisp numbers or even interval numbers. To capture this 
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vagueness and create flexibility to meet the investor’s preferences, the fuzzy set theory 

can be applied as a financial tool for decision under uncertainty. 

Lukasiewicz created the notion for what would be the concept of fuzzy 

membership in the future, with values varying from 0 (not a member of a specific set) to 

1 (a member) and everything between given some possibility of membership. Zadeh 

(1970) later introduced the concept of fuzzy mathematical programming for decision 

making, with flexibility of target values of the objective function. Far ahead, Bojadziev 

(2007) exemplified it by asserting that future events cannot be considered binary, as true 

or false statements. This logic isn’t enough to describe the future. 

According to this definition, other category of fuzzy programming, called 

possibilistic programming, treats ambiguous coefficients as fuzzy (with ambiguity in the 

sense of how much imprecision there is around the center of such coefficient), analyzing 

possibility distributions on such coefficient values (INUIGUCHI, 2000).  

The general approach to fuzzy programming comes in steps. First, a real-world 

problem is fuzzified. At this point, that fuzzy model created is transformed to a 

mathematical model and solved through optimization methods. Then, the optimal 

solution, after checked for validity, is deffuzified into a real-life solution.  

 

Figure 4 – Fuzzy programming approach  

 

 

 

 

 

 

 

 

Source: INUIGUCHI, 2000 
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proceed to the fuzzification of Markowitz equations to define a membership function, 

seeking to reduce the uncertainty in the forecast of future returns. 

 

2.6. Other models 

In the previous section was shown fuzzy programming techniques but in a linear 

optimization approach. For example, we could transform a Markowitz quadratic function 

into a linear programming problem with techniques like the spread minimization model. 

Inuiguchi showed that a possibilistic linear programming problem with a quadratic 

membership function is equivalent to a stochastic programming problem with a 

multivariate normal distribution. But some problems arise when the model is adjusted for 

a non normal 5th degree objective function. Fuzzy neural networks are useful in this 

context when input/output information is available, as stated by Zhang and Tao (2018), 

with genetic algorithm aimed to optimize the structure and parameters of the network. 

Fuzzy non linear programming (FNLP) don’t appear often in academic models due to 

computational power involved but it’s a good topic for future works on the subject. 

Another models worth mentioning for future studies concerns portfolio dynamic 

rebalancing with resampled efficient frontiers, as in the works of Michaud (2007). As 

well as fuzzy-entropy models, as defined by DE LUCA & TERMINI (1974) to describe 

non-probabilistic entropy models with the use of fuzzy set theory. 
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3. METHODOLOGY 

3.1. Dataset and modelling structure 

The dataset contains B3’s assets return information in the last decade (2011-2019). 

Longer time windows were not chosen due to the fact that financial data for brazilians 

markets are mostly scarce (YahooFinance, the bigger place for financial public data and 

the most used on R projects, don’t have any data before 2007 for most brazilian assets for 

example). And 2020 was excluded due to pandemic effects that could greatly skew the 

results, making it harder to do proper corrections to the dataset without the correct 

econometric tools and statistical adjustments. So, the data will consist on assets’ daily and 

monthly prices from the 2011-2019 period. 

We will focus on a portfolio allocation model instead of allocation and selection, 

to make the computational efforts manageable since the difference between a fixed 

portfolio of 20 assets compared to that of a 75 asset portfolio (as IBOVESPA index for 

instance) makes it exponencially more complex when dealing to a 5-factor model. As 

shown in the literature, 20 assets already mitigates most of idiosyncratic risk of individual 

assets. For example, the 7 most negotiated assets of Bovespa embodies 34,8% of all 

volume traded yearly, and a portfolio with 15 of the most negotiated assets already 

represents more than half of the stock exchange’s total size, at around 59,7% of total 

IBOV volume, as of 2020. 

To choose these assets putting the portfolio together, the historical performance 

will be taken into account through backtesting simulations to generate candidate 

potfolios. The portfolio produced from this process will be compared in terms of risk and 

reward to the one consisting of the fifteen most traded papers. Then, after this selection, 

the model parameters will be aplied (as the MVSKE multi objective structure) coming to 

a desired portfolio allocation.  

With this method, the newly shaped MVSKE model will try to answer some 

hypothesis about the brazilian financial market such as: does the high asymmetry of IBOV 

assets leads to higher returns? Higher moment models that capture such movements 

generate better portfolios? Is that statistical aspect significant enough or other variables 

could best explain IBOV idiosyncrasies? How does this model compares to the 

Markowitz classic model? And to the simple equally weighted allocation strategy? 
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The performances of the MVSKE model will be assessed in terms of the following 

portfolio performance measures: the Sharpe ratio (using the standard and adjusted for 

skewness ratios), Sortino ratio, Rachev ratio and mean absolute deviation ratio. Then, 

performance hyphotesis testing will be computed to evaluate statistical significance for 

the difference in ratios between the models analyzed. 

 

3.2. MVSKE Structure 

The model’s structure will have five variables: mean, variance, skewness, kurtosis 

and entropy. The multi objective function will be modeled with the help of R software 

(RStudio 1.3.1093). The main packages used are: Caramel (for non linear multiobjective 

optimization purposes), GPareto (for Pareto Front Estimation and Optimization), 

Quantmod alongside with PerformanceAnalytics (for portfolio analysis), and 

RTransferEntropy alongside NonLinearTseries (for entropy analysis). Thinking in terms 

of reproducible results, the algorithm used is "L-BFGS-B", with set.seed 2 for random 

number generator and 20.000 repetitions for portfolio simulations. 

The methodology for the training set will consist in 5/6 of the total data window, 

to be tested on the last 1/6 of the sample. This out-of-sample analysis will be important 

for the validation of the model’s performance. 

The objective function of the model is: 

Max 𝑓1(𝑥) =   �̅� = ∑ 𝑅𝑗
𝑛
𝑗=1 𝑊𝑗 

Min 𝑓2(𝑥) =  𝜎𝑝
2 = ∑ ∑ 𝑊𝑖

𝑛
𝑗=1 𝑊𝑗

𝑛
𝑖=1 𝐶𝑜𝑣𝑖,𝑗 

Max 𝑓3(𝑥) =  𝑆𝑝 =
∑ ∑ ∑ 𝐸(𝑅𝑖

𝑛
𝑘=1 𝑅𝑗

𝑛
𝑗=1 𝑅𝑘)𝑊𝑖𝑊𝑗𝑊𝑘

𝑛
𝑖=1

(∑ ∑ 𝑊𝑖
𝑛
𝑗=1 𝑊𝑗

𝑛
𝑖=1 𝐶𝑜𝑣𝑖,𝑗)3/2  

Min 𝑓4(𝑥) =  𝐾𝑝 =  
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𝑙=1 (𝑅𝑖
𝑛
𝑘=1 𝑅𝑗

𝑛
𝑗=1 𝑅𝑘𝑅𝑙)𝑊𝑖𝑊𝑗𝑊𝑘𝑊𝑙

𝑛
𝑖=1
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𝑛
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𝑛
𝑖=1 𝐶𝑜𝑣𝑖,𝑗)2

 

Min  𝑓5(𝑥) = 𝐸𝑃 = − ∑ 𝑊𝑖
𝑛
𝑖=1 (𝑙𝑜𝑔𝑛𝑊𝑖)  

 

Subject to �̅�𝑝 ≥ ∑ 𝑅𝑗
𝑛
𝑗=1 𝑊𝑗 

∑ 𝑊𝑖 = 1,   𝑊𝑖 ≥ 0 
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4. ANALYSIS AND DISCUSSION OF RESULTS 

 

 In this topic we evaluate the results of each model, comparing its similarities and 

dissimilarities. The data is basically historical prices from Yahoo Finance collected 

through RStudio, and from there we apply the statistical procedures for each model.  

 After the effciency of each model is evaluated through financial ratios, we 

compare those numbers to that of passive portfolios allocation’s strategy, as done by 

Andrino & Leal (2018), to see if such new active models generate some excess return.  

The framework for our portfolio selection model used mostly entropy to rank assets, since 

we're constructing an model whose distinction is the optimization of information entropy 

and transfer entropy between assets. But before we pick the entropy of the top components 

of each index studied, we filtered assets by some factors like value and momentum (as 

done in Fama&French models), and amount of data as well. The reason being that if  we 

choose assets by entropy alone, would have too small of a sample, and other assets with 

good performance would stay out of the basket since entropy is not the only variable 

important to selection. Other filters to reach our model's selected assets were if they are 

growth stocks, defensive stocks (low beta low risk) along with other aspects like 

momentum and liquidity as pointed by Asness and Moskowitz (2015).  

That pre-filters presented themselves necessary since just entropy ranking would turn out 

in portfolios with one or two assets weighting for the whole portfolio along other risk-

return inefficiencies. This is due to known characteristics like small growth assets, low 

sharpe and other non-desirable aspects that would clearly affect the portfolio 

performance. In this selection framework, 25 pre-filtered assets were chosen:  

 
Table 1: Pre-selected assets 

ABEV3 BRKM5 CVCB3 IVVB11 RADL3 

AZUL4 USDBRL ECOO11 LAME4 SMAL11 

BBDC4 BRML3 EMBR3 MGLU3 USIM5 

BOVA11 BTOW3 ENBR3 MRFG3 VVAR3 

ITSA4 CMIG4 GOLL4 MULT3 WEGE3 

Source: from the author 
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From the 25 assets pre-selected, we don’t have enough data provided by YahooFinance 

as needed for our model’s test data with: AZUL4, CVCB3, ECOO11, IVVB11, 

VVAR3. That leaves our model with 20 selected assets between currency (USDBRL), 

ETFs (BOVA11 and ECOO11) and mostly, stocks. 

Another limitation lies in the selection of the assets and its classes. Even though we 

have a diversified set of classes with currency, ETFs and stocks; some classes like fixed 

income were difficult to pass the filter, since the most popular Brazilian “bonds”, fixed 

income ETFs like IMAB11, FIXA11, IB5M11 (among others) doesn’t provide us with 

enough data to a proper analysis. 

As stated in the methodology section, our model will have its training set going 

from 2011 to first half of 2018, consisting of 5/6 of total dataset; to be tested on the last 

1/6 of the sample (second half of 2018 to 2019). This out-of-sample analysis will leave 

2020 off the table due to black swan events caused by Covid crashing the markets, which 

took volatility to extremes, as seen in the standard deviation graph below. 

  

Figure 5: Ibovespa Monthly Volatility 

Source: BM&FBovespa 
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4.1. MV Model Analysis 

From the 20 selected assets, there were six assets with positive weights in the 

optimally weighted MV in-sample analysis (considering in-sample analysis with whole 

dataset), as can be seen in the figure below. 

Figure 6: opt MV in-sample analysis  

 

Source: from the author 

 

Composition of MV “In-Sample” Portfolio: 46.5% USDBRL (“dol” in the figure 6), 

20.9% RADL3, 18.1% WEGE3, 14.2% MGLU3, 0.1% BRKM5 and 0.2% BTOW3 

(B2W). 

Constructing the portfolio and optimizing with the classic mean-variance approach, we 

have the “efficient frontier” above. What strikes first is that it doesn’t look like an 

classical efficient frontier since the vast majority of stocks combinations below are 

underneath efficiency threshold. However, if we construct a line with only the portfolios 

along the top left border, we will take notice of the efficient frontier curve’s concave 

aspect. 

Analyzing this MV Portfolio composition, those were the six assets with the best 

performance (in terms of MV analysis) among the 20 selected through the decade of data 
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in the 2011-2019 period. However, we are looking solely to the past here. To construct a 

robust model we have to go out-of-sample and test the variables performance without 

results already on the table. 

To give more robustness to the model, a training dataset from 2011 to the first half of 

2018 were created as stated before, to test out-of-sample performance in second half of 

2018 to 2019 (totaling a 90-to-18month training-to-test ratio; 5/6 to 1/6). It was done that 

way instead of the classic 2/3 training 1/3 test for some reasons. The first being the need 

for a big training dataset since in this case 72 months to predict 36 would be insufficient 

for financial data and its asymmetrical properties (what demands lots of data for validity), 

and we do not have access to older data for most assets. The second reason being it 

eliminates the need for yearly rebalancing of the portfolio since with the 2/3 approach 

rebalancing would be vital to keep the portfolio on track with momentum of the whole 

market (for example in 2011-2016, Ibovespa remained on a flattening bear market but 

2017 started its bull market for the index). 5/6 training, 1/6 test loses some level of 

robustness in comparison to 2/3-1/3 but adds simplicity in an already complex and 

dynamic model. 

Besides, Markowitz MV model is already known for weak performance out-of-

performance (DEMIGUEL, 2009). The goal is to see how MVSKE performs in 

comparison to the benchmark, so that 5/6 approach in comparison to MV models would 

serve its purpose. 

 Below we have the model results for out-of-sample MV analysis (for reproducible 

results, the algorithms and packages used are listed in the methodology section): 

Figure 7: optimized MV portfolio out-of-sample  
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Composition of MV “Out-of-Sample” Portfolio: 41.9% USDBRL (dol), 3.2% MULT3, 

27.5% RADL3, 21.2% WEGE3, 6.1% MGLU3, 0.1% BRKM5 (B2W). 

With the 5/6 training set 1/6 test set method, we arrived at the performance above out-of-

sample. It’s easily perceived that MGLU3 is just starting getting traction (since most of 

the stock results came just after 2018, out of training set) and with MULT3 losing traction 

in comparison with the whole dataset. Another aspect concearns the overall sharpe for 

possible portfolios, which are lower since in comparison to “in-sample” results (as 

expected). The bigger part of the bull market from 2018-2019 is off in the training set, 

which resulted in the lower overall Sharpe Ratio as well. However, to see how significant 

are those differences we arrive at the tables below. 

Even though the model was a good fit (since the portfolio is very similar in and out-of-

sample), the weights differ in a significant degree, which can change a lot the results for 

each portfolio. 

Table 2. MV data based on annual portfolio returns (in and out-of-sample) 
 

Sample Portfolio Mean Std Dev. Skewness Kurtosis Entropy 

IN 1/N 0.271 0.224       -0.105     -0.203  0.613 

IN OPT 0.246 0.164        -0.139 -0.333  0.529 

OUT 1/N 0.196 0.181   0.041 -0.483  0.682 

OUT OPT 0.204 0.152  -0.229 -0.554  0.597 
Source: from the author 

Since this is a Mean-Variance analysis, has to be noted that the values for skewness, 

kurtosis and entropy did not receive any optimization. The OPT portfolio of Table 2 refers 

to mean-variance optimization only. In the next section we’ll discuss full MVSKE 

optimization.  

Below we have the comparison in MV performance for in and out-of-sample portfolios: 

Table 3. MV ratio performance based on annual portfolio returns (in and out-of-sample) 

Samp

le 

Models SR MADR SSR 

IN MV(1/N) 0.7651 1.0372 1.2814 

IN MV(OPT) 0.8927 1.1872 1.4235 

OUT MV(1/N) 0.5326 0.7025 0.8672 

OUT MV(OPT) 0.6868 0.8948 1.0274 

Note: The SR, SSR and MADR denote the Sharpe ratio; Sortino-Satchell Ratio and Mean Absolute 

Deviation Ratio, respectively. Mean CDI (2011-2019) used as Brazilian risk free rate in the period. 
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We can note how naïve portfolios are underperforming in relation to optimized ones. The 

Sortino Ratio, that investigates downside deviation, seems to be in line with mean 

deviation ratio and Sharpe, what shows that data sample do not have large enough 

drawdowns and SR here can be a good performance evaluator. 

 

4.2. MVSKE Model Analysis 

Now we have to compare all those results in terms of risk, return and ratios to the next 

model, MVSKE, to see if that really exists excess return by modeling tail risk more 

specifically. 

Going into MVSKE models, we have below the data for rolling skewness and rolling 

kurtosis for a 2-year moving window of some of the our portfolios to investigate before 

looking at the whole picture. 

Two of our 5-objective-function in this model are: maximize skewness and minimize 

kurtosis. We can see in the graphs below how this can be a conflicting objective. And 

along with those two variables and the classic mean-variance ones, there is now entropy 

to the mix.  

Figure 8: Skewness and Kurtosis for MVSKE portfolio 

 
Source: from the author 

Besides entropy, which is a new addition explored more and more by post-modern 

portfolio theory, this fact of MVSK variables being intrinsic related to each other (as 

central moments of higher powers) is a fact of criticism in the related models. 
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One of main critics of using such models solely based on price movement without 

other accounting factors based on fundamental analysis is Richard Roll. Roll’s critique 

(1977) to MV models unfortunately can be partially extended to MVS and MVSK models 

for the validity of empirical tests of CAPM equation, in terms of mean-variance tautology, 

such that testing the CAPM equation is equivalent to testing mean-variance efficiency of 

the portfolio, requiring no model assumptions. And when we add two more constraints 

focusing on higher order moments of the same equation, we don’t get much more 

explanatory power then we had before. We are in fact creating  more factors utterly related 

to the first one, as skewness and kurtosis tells an expanded story, but a very similar 

comparing to variance, statistically speaking; going into data dredging territory.  

In that same sense, the 5-factor model proposed by Eugene&Fama (2014) seeks a way 

out of this tautology by pursuing additional explanatory power through independent 

accounting factors, such as profitability and investment, besides the 3 old factors of 

market risk, outperformance of small versus big firms and P/B ratios. Asness (2014) goes 

further and proposes momentum as a sixth-factor. But even those models have their own 

critiques, although being more accepted than mean-variance based ones.  

To try a path out on higher moments around the mean, we can add entropy to the 

model seeking more explanatory power. That’s the reason behind moving from MVSK 

to MVSKE models. 

The analysis of information entropy in MVSKE expands the model’s likelihood to 

detect financial information flows, since nonlinear relationships can also be measured. 

It’s true that small stocks have lower impact on the index while large caps dictate most 

of the flow. On the other hand, it is unclear how the market environment as a whole (as 

measured by the index) might provide information to individual stocks. Thus, to measure 

the extent to which information flows between the index and the stocks, we can use 

transfer entropy, with the help of RTransferEntropy package shaped by Behrendt, Simon, 

et al. (2019). 

Transfer Entropy derives from Shannon’s entropy  𝐸𝑃 = − ∑ 𝑊𝑖
𝑛
𝑖=1 (𝑙𝑜𝑔𝑛𝑊𝑖), as a 

measure for uncertainty, but expanding to measure the amount of directed transfer of 

information between two processes. 

Transfer entropy can be written as: 

𝑇𝑋→𝑌 = 𝐻(𝑌𝑡|𝑌𝑡−1:𝑡−𝐿) - 𝐻(𝑌𝑡|𝑌𝑡−1:𝑡−𝐿 , 𝑋𝑡−1:𝑡−𝐿),  
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Where: 

𝐻(𝑋) is Shannon’s entropy of the asset X; 

𝑋 𝑎𝑛𝑑 𝑌 are transfer processes where conditional mutual information takes place ; 

 

Figure 9: Transfer entropy for brazilian portfolio 

 

Source: from the author 

 

The graphic above reports transfer entropy with 95% confidence intervals for selected 

stocks. We can see that information flow from stocks to the market is higher for most 

stocks than in the other direction, what makes sense, even though there is indeed bi-

directional information flow. Also, as can be seen from the confidence bounds, the 

information flow towards the stock is actually not statistically significant in all cases for 

our brazilian portfolio in the example, except for CVC that is slightly above the 5% 

significance level. When analyzing flow towards market, we have EMBR3, CVC and 

MULT3 with significant levels of information entropy. 
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Figure 10: Transfer entropy for another brazilian portfolio 

 

Source: from the author 
 

In this other portfolio, we can see clearly how USD/BRL currency’s information flow 

from market towards stock is different from the other class of assets. What makes sense 

due to the negative correlation dolar usually has in comparison to Ibovespa (what could 

be seen in a greater magnitude in the pandemic due to carry trade currency effects) serving 

as hedge in a balanced portfolio. 

A further study would consist of testing such assets with Rényi entropy instead of 

Shannon’s. The former is particularly useful if the tails are assumed to be more 

informative than the centre of the distribution, what surely happens in finance with such 

volatile markets. Overall,this analysis show us how entropy and its different variables can 

find new relation between stocks that higher-order moments can’t, vastly increasing the 

explanatory power of the whole model. 

Finally, for the MVSKE 5-factor optimization, we have the following results on the 

positive optimized weights between the 20 assets selected: 

Table 4: MVSKE Portfolio Opt Weights (In and Out-of-Sample) 

 BBDC4 BOVA11 BTOW3 MGLU3 MULT3 RADL3 WEGE3 USDBRL 

IN 0 0.136 0 0.252 0.038 0.202 0.153 0.219 

OUT 0.057 0.112 0.053 0.172 0.095 0.177 0.149 0.185 

Source: from the author 
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Table 5. MVSKE data based on annual portfolio returns (in and out-of-sample) 
 

Sample Portfolio Mean Std Dev. Skewness Kurtosis Entropy 

IN 1/N 0.241 0.215      -0.047     0.180 0.577 

IN OPT 0.286 0.227       0.001 0.434 0.509 

OUT 1/N 0.226 0.234 -0.189 0.236 0.602 

OUT OPT 0.233 0.187 -0.119 0.376 0.524 

Source: from the author 

 

As we can see, the results are very widely spread out, with some portfolios improving 

their skewness and kurtosis risk along with better sharpe performance and others not so 

much (we’re reviewing those numbers along with performance ratios on the table at the 

end of section). One aspect the model succeed in minimizing across all portfolios was to 

minimize entropy risk. But as can be seen below, those results do not changed the overall 

scenario that much, with very similar results among MV and MVSKE performances. 

For the portfolio’s entropy calculations, approx entropy was used (from pracma 

package on R). The option for using approx instead of sample entropy is that being 

bounded in the [0,1] range, it’s easier to interpret as the amount of regularity and the 

unpredictability of fluctuations in a time series. With a low entropy value indicating that 

the time series flows towards being more deterministic; and a high value indicating more 

randomness. 

Table 6. MVSKE ratio performance based on annual portfolio returns (in and out-of-sample) 

Sam

ple 

Models SR ASR SSR MADR FTR GRR 

IN MVSKE(1/N) 0.6577 0.6877 1.2004   0.8457 2.4571 1.8856 

IN MVSKE(OPT) 0.8211 0.8805 1.4895   1.0348 2.9233 1.9233 

OUT MVSKE(1/N) 0.5402 0.5491 1.0167   0.7436 2.0568 1.6589 

OUT MVSKE(OPT) 0.7134 0.7430   1.0546   0.9102 2.6060 1.9005 

Note: The SR, ASR, and SSR, MADR, FTR and GRR denote, respectively: the Sharpe ratio; Adjusted 

Sharpe Ratio, Sortino-Satchell Ratio, Mean Absolute Deviation Ratio, Farinelli-Tibiletti Ratio and 

Generalized Rachev Ratio. 

 

Along with the Sharpe Ratio, Adj SR, Sortino Ratio and Median Deviation Ratio, 

were added two more ratios in MVSKE analysis to focus on quantiles distribution of non-

parametric models: The Farinelli-Tibiletti Ratio (FTR) and Generalized Rachev Ratio 

(GRR). The FTR above was in relation to the first lower and upper partial moment for a 
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moderate investor profile. The FTR results do not show big variations in moments across 

the different portfolios’ performances. The GRR (Generalized Rachev Ratio) measure the 

quantiles of portfolio returns and in this specific analysis, we choose the 5% quantile 

levels as the standard. The results also do not scream abnormalities in the portfolio or big 

non-normal risks in the quantiles analyzed, what can be confirmed observing the the low 

variation in skewness and kurtosis among the portfolios analyzed (what can be further 

attested by seeing the minimal variation between SR and ASR ratios). 

And finally, we can now compare the ratios between the previous models relating to 

portfolio performance: 

Table 7. Out-of-sample performance between MVSKE and the benchmark models 

Models SR ASR MADR SSR 

MV(1/N) 0.5326 0.5565 0.7025  0.8672 

MV(OPT) 0.6868 0.7168 0.8948 1.0274 

MVSKE(1/N) 0.5402 0.5491 0.7436 1.0167 

MVSKE (OPT) 0.7134 0.7430 0.9102 1.0546 

Source: from the author 

 

Since the MV model (which relies on Normal assumptions), is being compared with non-

parametric models such as MVSKE, the ratios we can actually compare are the ones 

above (including ASR-Adjusted Sharpe Ratio which can be compared even though it 

calculates skewness and kurtosis, because the ratio is adjusted to a Gaussian setting that 

is where Sharpe Ratio functions). The Generalized Rachev Ratio and the Farinelli-

Tibiletti Ratio, on the other hand, base its assumptions on non-Gaussian distribution 

settings.  

We can note how naïve portfolios are still underperforming in relation to optimized ones 

in MVSKE, just like in the MV setting. The MVSKE optimized portfolio, even though 

presented a good performance over other portfolios presented, it did not have significant 

difference between the benchmark MV optimized portfolio to attest without hesitation of 

it being a superior model. However, it is in no way inferior to the benchmark as well. 

Another limitation in the comparison is between MV and MVSKE portfolios, since the 

basket of assets in each one, even though very similar, differs, being harder to isolate the 

variables and evaluate. So, the optimized MVSKE portfolio does not necessarily 
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outperforms the optimized MV portfolio, as the ratios would imply, but indicates that it 

is at least as useful as the benchmark model. 

On the flip side, the comparison between 1/N naïve strategies and their optimized 

counterpart is a good one. It works since they have the same basket of assets’ composition 

and because they clearly shows statistical significance in the superior performance of 

optimization against equally weighted portfolios. Other authors like Leal et. al (2018) 

could argue in favor of naïve strategies stating that transaction costs and more frequent 

rebalance would change this scenario but it’s out of the scope of the models’ variables. 

 Even with the still open hypothesis of MVSKE not beating the benchmark, this 

first attempt at studying such model in the Brazilian context helped create awareness for 

non-normal methodologies in portfolio management, and how to deal with such implied 

risks that are not being properly assessed otherwise. It generated the same kind of 

performance to an extent, but with the advantage of being a more complete tool for 

management of tail risks that are not being controlled on the benchmark models. 
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5. CONCLUSION 

The necessity by investors to have realiable investment tools to technically assess 

uncertainty – that rises constantly in everyday markets – makes models like MV or 

MVSKE of vital importance for financial decision making, seeking to maximize value 

without taking non-analyzed risks. 

In this study, an extension of Markowitz model with higher order moments and 

information entropy was proposed. Although our MVSKE model presented viable and 

efficient solutions, there were not persistent significant increase in excess return by 

quantifying skewness, kurtosis and entropy risk. On the matter of information flow 

through assets, efficient market portfolio suggests no persistent systematic mispricing of 

stocks that could generate abnormal returns to our portfolios, and that was confirmed by 

the ratios results. Even though no substantial empirical evidence to support higher-

moments Markowitz was found, the model works well as a management tool for financial 

decision, being indeed a powerful instrument for quantitative analysis of asset selection 

and allocation.  

The statistical power of MVSKE, although not significantly superior to the 

benchmark, uphold the same level of performance. Both MVSKE and the benchmark 

shows weaker performances out-of-sample. Since the MVSKE is almost completely 

derived from the same central moment variables, just expanding powers on the 

benchmark model, it could be expected that entropy variable wouldn’t be capable of 

changing the results to a large extent. 

For future studies, more work on refining the models constraints are needed, such 

as co-skewness and co-kurtosis deeper analysis over sub-sample periods, along with 

further tests to be stressed in order to investigate on the influence of asset class constrains 

and choice of personalized parameters in final results. Also, using a fuzzy framework 

could enhance the model’s performance seeking to reduce the uncertainty in the forecast 

of future returns. 

Extra research adressing transaction costs into the framework and giving more 

weight to entropy related variables like cross-entropy and mutual information as more 

robust variables in detriment to variance related ones see if performance changes, is 

highly appreciated. Another crucial recommendation is to gather more data to increase 
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the reliability of the methods of research, since highly skewed variables demands high 

amounts of data.  

 This thesis is the first attempt to examine MVSKE types of higher order moment’s 

portfolios in the brazilian markets and analyze its results comparing to the classic 

Markowitz model of Modern Portfolio Theory. The findings, although not conclusive, 

instigates more research on the field of quantitative finance and post-modern portfolio 

theory applied to brazilian cases in the years to come. 
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