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Abstract: Previous hotel performance studies neglected the role of information entropy in feedback
processes between input and output management. This paper focuses on this gap by exploring
the relationship between hotel performance at the industry level and the capability of learning by
doing and adopting best practices using a sample of 153 UK hotels over a 10-year period between
2008–2017. Besides, this research also fills a literature gap by addressing the issues of measuring
hotel performance in light of negative outputs. In order to achieve this, we apply a novel Modified
slack-based model for the efficiency analysis and Least Absolute Shrinkage and Selection Operator to
examine the influence of entropy related variable on efficiency score. The Results indicate that less
can be learnt from inputs than from outputs to improve efficiency levels and resource allocation is
more balanced than cash flow and liquidity. The findings suggest that market dynamics explains the
cash flow generation potential and liquidity. We find that market conditions are increasingly offering
the opportunities for learning and improving hotel efficiency. The results report that the distinctive
characteristic of superior performance in hotel operations is the capability to match the cash flow
generation potential with market opportunities.

Keywords: UK hotels; data envelopment analysis; information entropy; cash flow generation;
operating scale; learning process

1. Introduction

The tourism and hotel management literature has long praised the benefits of hos-
pitality and leisure issues on customer satisfaction levels [1] and the resulting impact on
performance [2–5] but most research has been limitedly based on individual hotel perfor-
mance. Hence, there is a lack of studies looking at industry performance that can reflect
learning process and cash flow generation from operating scale that could not be measured
or captured by analyzing each firm alone [6,7]. Despite this call for further investigation on
hotel performance, and the recognition of learning processes as a key theme for improving
cash flow generation [8], we identify a research gap concerning whether information en-
tropy related-variables can lead to different performance results at the hotel level within
the industry ambit.

Performance in hotel industry is often characterized by concentration of best practices
in few large players with high economies of scale and profitability [9]. Big international
hotel chains are particularly representative of this context. Conversely, local hotel chains
suffer from small operational scale and working capital constraints, which limits their
innovation rate and their ability to adequate to best practices over the course of time [10].

United Kingdom, as one of the European countries with a long history, special heritage
and traditional culture, attracts huge amount of tourists every day. This tourist attraction
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was facilitated by the capital of UK, London, which is one of the most important financial
centers in the world. In addition, as the increase in the economic growth and optimization
in the production process derived from the advancement of internet technology and
information sharing, people across the globe saw an increase in the amount of disposable
income. Therefore, people do not only pursue the possession of physical capital, but
focuses more towards the wealth of themselves at the spiritual level. In other words,
people nowadays tend to spend money on exploring the interesting and different aspects in
their life. One area of these would be travelling to different countries to feel different culture,
food, people, et cetera. The popularity of travelling undoubtedly boosts the development
and prosperity of the hotel industry, which is one of the most important components in the
hospitality sector, and further contribute to the country’s economic growth.

The importance of the hotel industry in the economy together with the increase in
the tourism volume induce more researchers to investigate the performance in the hotel
industry. On top of the research studies using relevant accounting ratios to evaluate the
profitability in the hotel sector, a growing number of research articles use advanced op-
erational method to assess the efficiency level of hotels which provided more accurate
results comparing to the accounting ratios. Besides the traditional non-parametric Data
Envelopment Analysis and parametric Stochastic Frontier Analysis, scholars built upon
and extend these methods resulting in a number of innovative models including Data En-
velopment Analysis metafrontier, Data Envelopment Analysis window analysis, Bayesian
Stochastic Frontier Analysis, triangular Data Envelopment Analysis, super efficiency Data
Envelopment Analysis and grey entropy, slack-based Data Envelopment Analysis, network
Data Envelopment Analysis, stochastic Data Envelopment Analysis, hyperbolic network
Data Envelopment Analysis as well as two-layer bootstrapped Data Envelopment Analysis.

The objective and contribution of this study is to explore the relationship between hotel
performance at the industry level and the capability of learning by doing and adopting best
practices. Precisely the study is based on the underlying hypothesis that entropy-related
variables could help in increasing cash flow generating potentials by a better use of current
productive scale [11,12]. Besides, this research also fills a literature gap by addressing the
issues of measuring hotel performance in light of negative outputs, which is typical of
cash-flow and liquidity related variables. To this end, a novel Modified slack-based model
is developed to allow better discrimination of super-efficiency scores. Finally, we propose
the Least Absolute Shrinkage and Selection Operator to examine the influence of entropy
related variable on efficiency scores.

Hotel performance measurement is a key research area surrounded by epistemic
uncertainty with respect to the dual formed not only by the geographic and temporal
scope of the analysis, but also by the method chosen to measure performance. In a broader
sense, epistemic uncertainty reflects the lack of prior knowledge on how hotel performance
could be impacted by economic conditions (contextual variables) scattered through time
and space. For many practical purposes, epistemic uncertainty is inherent to delimitating
the object-method pair under study and manifests itself regardless of the literature gap
identified, the scale used to measure variables, the variable (input/output) selection, and
the reproducibility conditions that are intrinsic to some extent to the hoteling industry,
which may vary within and between countries. For instance, there is no questioning that the
proper identification of the literature gap is relevant for advancing the body of knowledge
in hotel performance, especially with respect to DEA models where a plethora of different
alternatives could be employed to handle specific aspects of hotel industry efficiency in
different countries. However, research gaps and input/output measurement scales do not
by themselves mitigate epistemic uncertainty in the ambit of hotel performance, but only
assure under the aspects of internal validity—in light of the current body of knowledge
and scale validity—that the proper analytical models were developed to adequately handle
the specific nature of what is being measured.

Hence, as regards this paper, epistemic uncertainty can be conceptualized as the
scientific uncertainty in the process of modelling hotel performance criteria in distinct
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geographic locations over the course of time. Despite limited data and knowledge, the
joint use of information theory and soft computing offers methodological tools to mitigate
epistemic uncertainty while increasing research validity and reproducibility: (i) sensitivity
analysis not only by running alternative models, but also by allowing the incorporation
of variables with negative values in DEA; and (ii) using information entropy principles
for improving decision-making as regards whether or not a given model is contributing to
reduce epistemic uncertainty by mapping how improvements in hotel inputs and outputs
could be achieved through learning from other variables. The methodology here employed
satisfy these two conditions, not only by increasing the valid scale range of inputs and
outputs to allow negative values in DEA, but also by the composing the information entropy
of efficiency scores, inputs, outputs, and contextual variables into its major constituents,
thus offering to academics and practitioners an improvement roadmap in the hotel industry.

The results show that information entropy on inputs is much wider than the one of
outputs, therefore, less can be learnt from inputs to improve the efficiency level in the
UK hotel industry. In addition, we find that the entropy dispersion of the contextual and
business-related variables is in between the one of inputs and outputs, thus, something
can be learnt from the market dynamics related to tourism inflows and outflows as well as
financial conditions of hotels, which is related to the cash flow generation potential. We
further notice that the evolvement of inputs and contextual variables related to informa-
tion entropy goes in opposite directions, in other words, at the time when information
entropy for inputs increases, the one for contextual variables decreases, which indicates
and conforms that over the examined period, there is a degree of opportunity to learn from
market conditions to improve the hotel efficiency level. Finally, the negative impact of
input/output joint entropy on super efficiency scores suggest that the UK hotels should be
operated under a decreasing return to scale combined with a price discount policy, which
would be helpful to improve efficiency level from the perspective of increase the cash flow
generation potential.

The remainder of this paper is organized in four sections. First, we provide a dis-
cussion of the literature concerning estimation of hotel efficiency. Then, we describe the
study’s methodology. Next, we offer the results and discussion. Finally, we conclude with
implications, limitations and future research opportunities.

2. Literature Review

The efficiency in the hotel industry has been extensively investigated by the empirical
literature. The original operational methods used to estimate hotel efficiency can mainly
divided by Data Envelopment Analysis [13–21] and Stochastic Frontier Analysis [22].
However, Data Envelopment Analysis suffers from a number of limitations [23–25]: (1) the
effect of exogenous variables on the operation is ignored; (2) statistical errors are ignored;
(3) statistical test with the results are difficult to be performed; (4) it cannot clearly indicate
the way to improve efficiency. In comparison, the main weakness of Stochastic Frontier
Analysis is it needs a particular parametric function form to represent the underlying
technology and distributional assumption for the efficiency terms are required [26].

Recently, a number of research articles extended the traditional Data Envelopment
Analysis or Stochastic Frontier Analysis by introducing some advanced techniques in
estimating the level of efficiency in the hotel industry. This includes the use of (1) Data
Envelopment Analysis metafrontier analysis [27], this method benefits from the advantage
of being able to compare the performance between different groups without any ignorance
of heterogeneity between them [28]; however, the existing study suffers from the drawbacks
of being unable to integrate the meta-frontier and undesirable output together; (2) Data
Envelopment Analysis window analysis [29,30]; this method has the advantage of making
it feasible to evaluate and compare the performance of Decision Making Units in different
periods through regarding them as a separate entity in different periods [31], however, Data
Envelopment Analysis window analysis suffers from the limitations that this technique
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was designed for a short period of time and the random error in the variables was not
considered and the dependence structure to estimate the efficiencies was not used [32].

Besides the above, the empirical studies also proposed and present the following
methods including (3) Bayesian stochastic frontier analysis [33,34], in the Bayesian ap-
proach, a special function form for the production frontier and a source of randomness is
needed [35] although this method has the benefit of being able to separate the efficiency
from the technological difference and include the prior information about the parameter in
inference [36]; (4) Triangular Data Envelopment Analysis model [37], this specific method
has the advantage of considering efficiency and effectiveness in the hotel production pro-
cess at the same time under a model [38], however, as argued by the authors themselves,
due to the fact that Data Envelopment Analysis requires large number of observations, in
particular when the number of inputs and outputs increase, therefore, Data Envelopment
Analysis is not suitable for small hotel chains.

In addition, we also observe that empirical studies have attempted to use the method
below including (5) super efficiency Data Envelopment Analysis and grey entropy [39], as
argued by the authors, the super-efficiency Data Envelopment Analysis gives the efficient
unit a score of more than 1 and less efficient ones with a score of less than 1 and it is a better
method in efficiency measurement in practice and grey entropy benefits from the advantage
that being able to compute the weight without any rigorous statistical requirement and
assumptions; however, super-efficiency Data Envelopment Analysis suffers from the issue
of infeasibility [40]; (6) Slacked-based Data Envelopment Analysis model [41]; this method
benefits from the advantages of providing more discriminatory power and more sources
of inefficiency can be detected [42]; however, the study failed to identify and consider the
internal sub-production process (i.e., divide the production process into several stages).

Third, a number of research articles have applied the following method in estimating
hotel efficiency including (7) Network Data Envelopment Analysis model [43,44]; the
network Data Envelopment Analysis supplements the previous slacks-based model by
dividing the production into stages and being able to identify the source of (in)efficiencies
for each of the stages [45], however, under the assumption of variable returns to scale, the
network DEA does not provide information on divisional efficiency but only provide infor-
mation on projection frontier [46]; (8) Stochastic Data Envelopment Analysis model [47,48];
as argued by [47], the stochastic Data Envelopment Analysis model improves the con-
ventional Data Envelopment Analysis model by providing a higher ability to measure
efficiency in the environment with uncertainty. On the other hand, the drawback of this
method lies to the fact that stochastic variables are imposed limitations (i.e., the stochastic
inputs are normally distributed) [49].

Finally, we also find that the following methods have been applied in the hotel
performance evaluating including (9) Hyperbolic network Data Envelopment Analysis
model [50]; as argued by the authors, this method benefits from the advantages of being
able to not only allow the inefficient Decision Making Units to projects their inputs and
outputs to the efficient frontier simultaneously, but consider the shared inputs in the
model as well. However, a non-linear programming problem has to be solved for using
the hyperbolic efficiency measure [51]; (10) two-layer bootstrapped Data Envelopment
Analysis model [52]. As argued by the authors, this method uses an independent and
repeated sampling process, through which the errors could be reduced. [53] argue that
bootstrapped Data Envelopment Analysis model has unreasonable weights assigned for
inputs and outputs which would affect the robustness of the results.

Regarding the inputs and outputs selection in the hotel production process, quite a
few different inputs have been proposed and used by various studies including accommo-
dation capacity [54]; Tourist arrivals [55]; number of employees [30,56]; Labor cost [57,58];
depreciation expenses [16]; capital [13,59]; operating expenses [60]; among others, on the
other hand, there are quite a few outputs considered by the empirical research such as rev-
enue [61,62]; average occupancy rate [63,64]; average room rate [65]; rate of satisfaction [16];
Sales [66]; among others.
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In summary, through reviewing the literature regarding the estimation of efficiency in
the hotel industry, we observed that there has been no attempt to examine the relationship
between hotel performance at the industry level and capability of learning by doing and
adopting best practices, the investigating of this is of particular importance regarding the
potential behavior that can be engaged in by the hotels through interacting with other
hotels in the industry. We fill in this gap by examining this relationship. The issue of
negative output in the efficiency analysis has not been addressed in the estimating of hotel
efficiency, we contribute to the empirical literature by proposing a modified slack-based
model. Finally, we contribute to the literature in the examination of hotel efficiency by
being the first to propose a Least Absolute Shrinkage and Selection Operator to examine
the influence of entropy related variable on efficiency scores which is supposed to provide
more robustness and accurate results for policy making purposes.

3. Methodology

This section describes the major methodological cornerstones employed in this re-
search. Readers should recall from the introduction that the hybrid approach (DEA-
Information Entropy-LASSO regression) here discussed is designed towards the mitigation
of epistemic uncertainty in hotel performance. Being a non-parametric technique, DEA
embedds in itself a large degree of uncertainty, as long as no distributional assumptions
are required whatsoever with respect to inputs, outputs, and the resulting computed
scores. Information entropy allows a distributional assessment of these quantities, helping
in understanding not only their degree of reliability, but also in unveinlyng non-linear
associations that may exist among them, moving further beyond the traditional correlation
coefficient approach. In turn, LASSO allows the identification of the critical explanatory
variables, by imposing informational penalties, helping in structuring by means of a linear
model how much of impact on efficiency scores is due to a given information entropy
subset of variables, i.e., inputs, outputs, and contextual variables.

3.1. The Data

We collect a dataset of 153 UK hotels over a 10-year period between 2008–2017.
Regarding the selection of inputs and outputs for the novel modified slack-based model
proposed, we choose three inputs to represent the operational scale which are number
of employees, depreciation/amortization, as well as cost of goods sold, we consider five
outputs to represent the cash flow generation potential including operational revenue, other
operating expenses, liquidity ratio, capitalization as well as hotel size. Capitalization is
measured by the ratio between shareholders’ funds and total assets, hotel size is measured
by the natural logarithm of total assets. The third group of variables besides inputs and
outputs are contextual business-related variables such as number of international arrivals,
number of international departures, international tourism expenditures, international
tourism receipts, total assets as well as shareholders’ fund.

Cost of goods sold, operating revenue, depreciation/amortization, operating expenses,
total assets are in the unit of thousand Euros, hotel size, capitalization and liquidity ratios
are in ratios, international tourism receipts and expenditure are in the unit of current US
dollars, number of arrivals and number of departures are in the unit of persons. The
input and output variables together with total assets, shareholders’ fund are collected from
Amadeus database (https://www.bvdinfo.com/en-gb/our-products/data/international/
amadeus), which contains comprehensive information about large public and private
companies across Europe, while other contextual and business related variables including
tourism arrival, departure, expenditure and receipts in the UK are collected from the world
bank database (https://data.worldbank.org/).

We use cost of goods sold, depreciation/amortization and the number of employees
to generate five outputs including operating revenue, other operating expenses, liquidity
ratio, capitalization and hotel size. The selection of cost of goods sold is in line with [17],
while the cost of goods sold includes the cost of labor. We include the number of employees

https://www.bvdinfo.com/en-gb/our-products/data/international/amadeus
https://www.bvdinfo.com/en-gb/our-products/data/international/amadeus
https://data.worldbank.org/
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as another input, in line with [13], who used labor cost and employees number at the
same time. We argue that the labor input in the hotel efficiency analysis should focus
on two different perspectives, namely the labor cost in monetary terms and the number
of employees. Finally, we consider the depreciation/amortization as one input is in
accordance with the opinion of [67] who argues that the inputs can be generally divided
into assets-related inputs and cost-related inputs, the former one contributes to the costs
indirectly through depreciation and amortization.

With regard to the selection of output variables, normally RevPAR, which is a tradi-
tional measure in hotel performance should be included, however, the Amadeus database
through which we collected our dataset did not provide the statistics for this variable,
therefore, we used the operating revenue as an alternative indicator. Basically, these op-
erating revenue and RevPAR are similar from the perspective that both of them measure
the revenue from the accommodation services provided by the hotels. We used other
operating expenses as one of the outputs, this is in contrast with the previous literature
which treated it as an input variable [39], we are the pioneer to consider it as an output due
to the consideration that hotels aim to minimize the overhead in hotel operation, this is
also related to one of our contributions which is to measure hotel performance in light of
negative outputs. Another aim of hotel operation is to achieve growth, therefore, we use
hotel size as one of the output variables. We consider the capitalization as one of the output
variables considering the fact that hotel operation aims to achieve a higher profitability as
well as improve the level of stability, a higher level of capitalization serves the purpose of
reducing hotel risk. Finally, our consideration to use liquidity ratio as one of the output
variables is in line with [44].

We control for a number of contextual variables including the number of international
arrivals, number of international departures, international tourism receipts and interna-
tional tourism expenditure. The number of international arrivals is an important factor
that will contribute to performance improvement in the hotel industry [68]. In terms of
the outbound international tourism because some flights will be in the morning time, this
will make hotel accommodation a necessity for the domestic tourists, therefore, we argue
that the international tourism departure will have a potential impact on hotel performance.
International tourism expenditure is supposed to influence the hotel’s cash flow generation
potential because nearly half of tourism expenditure is related to accommodation and
lodging [69]. Ref. [70] uses tourism receipt as the output variable and two input variables
(namely, the number of tourist bed-nights in hotels and the number of tourist bed-nights in
campsites) to measure tourism productivity. This shows that there is a linkage between
hotel accommodation and tourism receipts. In other words, tourism receipts will boost
the hotel’s cash flow potential. We also include hotel size as one of the contextual vari-
ables following [71] considering the fact that large hotels would be able to reduce the cost
from economies of scale. Finally, we include the shareholders fund as the final contextual
variable. Large shareholders’ fund reduces the borrowing cost and further facilitate the
improvement in hotel performance.

3.2. The Novel Modified Slack-Based Model
3.2.1. Preliminaries

Suppose we have a set of n Decision Making Units, Decision Making Unitj, j = 1, 2, . . . , n,
Such that each one uses m inputs

{
xij
}

, i = 1, 2, . . . , m to produce s outputs
{

yrj
}

,
r = 1, 2, . . . , s. We show Decision Making Unitj by

(
xj, yj

)
, j = 1, 2, . . . , n, and let X =(

xij
)
∈ Rm×n and Y =

(
yrj
)
∈ Rs×n be the input and output matrix, respectively. Besides,

we assume that:

(a) There is at least one positive output.
(b) There is at least one positive input.
(c) There is some negative input/output data.
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The production possibility set is defined as below

P =

{
(x, y) | x ≥ Xλ , y ≤ Yλ ,

n

∑
j=1

λj = 1 , λ ≥ 0

}

where λ ∈ Rn is the intensity vector.
The Modified Slack-based Model is defined as follow [72]:

min ρ =
1−∑m

i=1
wis−i
P−io

1+∑s
r=1

vrs+r
P+ro

s.t. ∑n
j=1 λjxij + s−i = xio i = 1, 2, . . . , m

n

∑
j=1

λjyrj + s+r = yro r = 1, 2, . . . , s (1)

∑n
j=1 λj = 1

∑m
i=1 wi = 1

∑s
r=1 vr = 1

s−i , wi ≥ 0 i = 1, 2, . . . , m
s+r , vr ≥ 0 r = 1, 2, . . . , s
λj ≥ 0 j = 1, 2, . . . , n

where P−io = xio −min
j

{
xij
}

, i = 1, 2, . . . , m and P+
ro = yro −max

j

{
yrj
}

, r = 1, 2, . . . , s.

3.2.2. The Proposed Model

In this section we propose our ranking approach. First, we compute the efficiency
score of Decision Making Units using the Modified Slack-Based Model. If there is just
one efficient Decision Making Unit, then we do not need ranking. On the other hand,
suppose that there is more than one efficient unit and let Decision Making Unito be one
of the efficient units. Besides, let Xo and Yo be the inputs/outputs matrices excluding
Decision Making Unito, respectively. Hence, the new production possibility set is

Po =

{
(x, y) | x ≥

n

∑
j=1,j 6=o

λjxj, y ≤
n

∑
j=1,j 6=o

λjyj ,
n

∑
j=1,j 6=o

λj = 1 , λj ≥ 0 , ∀jo

}

Now, the proposed super-efficiency model is as follows

min ρo =
1+∑m

i=1
wit+i
P−io

1−∑s
r=1

vr t−r
P+ro

s.t. ∑n
j=1,j 6=o λjxj ≤ xio + t+i i = 1, 2, . . . , m

n

∑
j=1,j 6=o

λjyj ≥ yro − t−r r = 1, 2, . . . , s (2)

∑n
j=1,j 6=o λj = 1

t+i ≥ 0 i = 1, 2, . . . , m
t−r ≥ 0 r = 1, 2, . . . , s
λj ≥ 0 ∀j 6= o,

here
(
t+i , t−r

)
show the deviation of (xio, yro) from the frontier of the production possibility

set such that Decision Making Unito situated outside of the production possibility set. It is
clear that if ρ∗o = 1 then t−∗r = 0 and t+∗i = 0 and this means that Decision Making Unito is
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a non-extreme efficient Decision Making Unit. When ρ∗o > 1 then at least one component
of t−∗ (t+∗) is nonzero and in this case Decision Making Unito is an extreme efficient unit.

Remark 1. If max
j

{
yrj
}
= yro 6= 0 or min

j

{
xij
}
= xio 6= 0 then we set P+

ro = |yro| or P−io = |xio|

respectively, and as a result, P+
ro and P−io are positive.

The model (2) has the following properties.

Proposition 1. Let ρ∗o be the optimal value of model (2). Then, ρ∗o ≥ 1.

Proof. The proof is clear and hence omitted. �

Proposition 2. The super-efficiency score ρ∗o is units invariant, i.e., it is independent of the
units in which the inputs and outputs are measured provided these units are the same for every
Decision Making Unit.

Proof. The proof is clear and hence omitted. �

Proposition 3. Model (2) is translation invariant.

Proof. The proof is clear and hence omitted. �

Model (2) is a fractional programming and can be easily converted to the following
linear model:

min δo = k +
m
∑

i=1

wiT
+
i

P−io

s.t. k−∑s
r=1

vrT−r
P+

ro
= 1

∑n
j=1,j 6=o µjxj ≤ xio + T+

i i = 1, 2, . . . , m

n

∑
j=1,j 6=o

µjyj ≥ yro − T−r r = 1, 2, . . . , s (3)

∑n
j=1,j 6=o µj = 1

T+
i ≥ 0 i = 1, 2, . . . , m

T−r ≥ 0 r = 1, 2, . . . , s
µj ≥ 0 ∀j 6= o,
k ≥ 0

where = 1

1−∑s
r=1

vr t−r
P+ro

, T+
i = kt+i , T−r = kt−r , µj = kλj for each i, r and j.

Example 1. This example has been taken from [72]. Consider Table 1. In this table we have 13
Decision Making Units each one uses two inputs (x1, x2) to produce three outputs (y1, y2, y3).
One input (x1) and one output (y1) is positive and other data are negative. Table 2 displays the
obtained results for this example. In this table, we computed the efficiency score of each Decision
Making Unit using model (1). This table contains the super-efficiency score and the rank of each
unit using the proposed model (model (3)), as well. It is clear from the Table 3 that C, G, H, K and
M are efficient Decision Making Units by model (1) and this model could not rank these efficient
Decision Making Units. On the other hand, the new model not only computes the efficiency scores
but ranks also the efficient Decision Making Units. Besides, Sharp’s model cannot be applied to
computing multi-period efficiency.
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Table 1. Basic descriptive statistics for UK hotels dataset.

Variable Name Number of
Employees Costs of Goods Sold Depreciation

Amortization Operating Revenue Other Operating
Expenses Liquidity Ratio Capitalization Size

Variable type x1 x2 x3 y1 y2 y3 y4 y5

definition Labor Cost of material and labor
Expenses of a fixed

assets over its uneful
life

Revenue generated
by a hotel from
accomodation

services

Overhead expenses
Ratio between liquid

assets and total
assets

Ratio of
shareholders’ funds

and total assets

Natural
logarithm of
total assets

Mean 407.34 12,506.34 2246.88 32,224.33 16,233.96 1.83 0.30 4.69

Maximum 4124.00 167,886.12 23,236.49 364,911.94 213,270.02 33.54 0.98 6.31

Minimum 41.00 476.81 1.17 1382.78 (114,218.07) 0.00 (6.27) 3.00

Standard deviation 482.17 19,429.32 3180.72 41,993.19 23,784.11 3.15 0.60 0.52

coefficient of
variation 1.18 1.55 1.42 1.30 1.47 1.73 2.05 0.11

Variable Name
Number of Arrivals

(international
tourism)

Number of Departure
(international tourism)

International
Tourism

(Expenditure)

International
Tourism (Receipt) Total assets Shareholders’

Funds

Variable type z1 z2 z3 z4 z5 z6

definition

Overnight visitors
who travel to the UK
whose main purpose

in visiting is not
commercial.

number of departures that
people make from the UK
to any other country for

any purpose other than a
remunerated activity

Expenditure of UK
tourists in other

countries

Tourism receipt in
the UK from tourists
from other countries

All the items with
economic value
including cash,

accounts receivable,
inventory,

equipment, tool, etc.

The amount of
equity in a company,
which belongs to the

shareholders

Mean 31,816,324.42 62,511,993.83 81.61 52.58 109,166.57 43,712.99

Maximum 37,814,000.00 74,189,000.00 94.96 65.45 2,022,746.63 1,222,400.81

Minimum 28,199,000.00 55,562,000.00 71.67 39.04 1008.69 (288,298.06)

Standard deviation 3,566,900.57 6,458,211.21 7.40 8.69 204,176.45 123,073.49

Coefficient of
variation 0.11 0.10 0.09 0.17 1.87 2.82
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Table 2. Data of Decision Making Units.

Decision Making Unit x1 x2 y1 y2 y3

A 1.03 −0.05 0.56 −0.09 −0.44
B 1.75 −0.17 0.74 −0.24 −0.31
C 1.44 −0.56 1.37 −0.35 −0.21
D 10.8 −0.22 5.61 −0.98 −3.79
E 1.3 −0.07 0.49 −1.08 −0.34
F 1.98 −0.1 1.61 −0.44 −0.34
G 0.97 −0.17 0.82 −0.08 −0.43
H 9.82 −2.32 5.61 −1.42 −1.94
I 1.59 0 0.52 0 −0.37
J 5.96 −0.15 2.14 −0.52 −0.18
K 1.29 −0.11 0.57 0 −0.24
L 2.38 −0.25 0.57 −0.67 −0.43
M 10.3 −0.16 9.56 −0.58 0

Table 3. Efficiency, Super Efficiency and rank for Example 1.

Decision Making Unit Efficiency Super Efficiency Rank

A 0.84134 6
B 0.71002 10
C 1 1.11675 5
D 0.63821 12
E 0.72132 9
F 0.77915 8
G 1 1.2436 3
H 1 7.55694 1
I 0.80078 7
J 0.69683 11
K 1 1.21105 4
L 0.61005 13
M 1 2.9725 2

3.3. Novel Modified Slack-Based Data Envelopment Analysis Applied to UK Hotel Efficiency

Information Entropy can be conceptualized as a measure of uncertainty, which is
a probabilistic concept. Depending on the entropy characteristics, the randomness and
dispersion produced by a random variable can be determined by calculating the informa-
tion entropy for each original variable—for example: input, output—under each group
of analysis (hotel, city, and year). The greater the value of the information entropy, the
greater the randomness or the dispersion within the ambit of each group and, therefore, the
greater the heterogeneity produced in analyzing this unknown phenomenon [73]. In this
paper, information entropy is used to analyze the aggregate input, output, and contextual
variable distributions based on data collected at the hotel level, for city, for year. Through
this approach, a novel assessment is established in estimating the inherent heterogeneity
of a given locus of analysis with respect to each hotel epistemic uncertainty in translating
operational scale into cash flows.

Joint Entropy, in turn, represents the joint epistemic uncertainty of two random
variables. It helps in understanding how balanced their responses are. Specifically, with
respect to input and output Joint Entropy at the hotel level, it is possible to describe whether
cash flow generating potentials are elastic or inelastic to variations in operational scale.
This is particularly important because hotel operations are capital intensive requiring
somewhat higher breaking-even levels. Joint Entropy between outputs and contextual
variables related to tourism inflow may reflect also whether or not revenues are elastic with
respect to demand. Differently from Information Entropy and Mutual Information, which
is discussed next, Joint Entropy bridges the gap between epistemic uncertainty and learning
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processes by imposing economic constraints or boundaries—such as scale and revenue
elasticities—on possible joint fluctuations. While balanced joint fluctuations would denote
a neutral or constant response; unbalanced ones would represent decreasing/increasing
returns-to-scale and inelastic/elastic revenue responses to demand given a capacity level.

Mutual Information represents the mutual information level of two random variables
A and B and measures the “amount of information” that can be inferred about one random
variable by observing the other [74]. Putting it into other words, mutual information is
intricately linked to the expected “amount of information“ held in a random variable,
which is not necessarily limited to a linear dependence like the correlation coefficient or
other forms of unidirectional causality [75] That is why mutual information is also known
as information gain [76]. This means that mutual information bridges the gap between
elements in distinct sets (in this research, input, output, and contextual variable sets). The
information gain for one random variable from learning for the other could even be as
high enough to offset their individual entropies. This would be equivalent to affirm that
mutual information represents the strength or intensity of the feedback processes that exists
between the inputs and outputs observed at each Decision Making Unit level, by which
information is also gained on how improving cash flow generation through learning on
how managing operational scale (and vice-versa).

Figure 1 depicts how the input, output, and contextual-business related variable sets
are interrelated to each other, within the ambit of a learning or feedback process in the UK
hotel industry, by means of information entropy and its derivate measures: joint entropy
and mutual information. The underlying hypothesis is that super-efficiency scores are
impacted by information entropy (for example., information dispersion of input, output,
and contextual variables), joint entropy (for example., balanced joint variations of input,
output, and contextual variable pairs), and mutual information (for example., information
gains translated into operational synergy by means of managerial feedback or learning
processes where it is possible to learn about one variable set through the behavior of
the other).
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The dataset summarized in Table 1 represents an unbalanced sample of 647 different
hotels distributed among 153 distinct UK cities over the course of 10 years, from 2008–
2017, totaling 1530 hotel-year (or Decision Making Unit-year) pairs of observations. Let’s
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consider c as the index for cities, c = {1 . . . C, C = 55}; t as the index for years = {1 . . . T,
T = 10}; and h as the index for hotels = {1 . . . H, H = 153}. Let´s also consider that, for each
hotel at each year of the sample, i = {1 . . . I; I = 3}is the index for its inputs (x); o = {1 . . . O;
O = 5} is the index for its outputs (y); and v = {1 . . . V; V = 6} is the index for its contextual
variables (z). At last, let s denote the (super) efficiency scores computed per each hotel h for
each year t. Hence, the following information quantities can be defined:

Information entropy mass for the efficiency scores per hotel per year:
For efficiency scores:

Em(S) = −sh,t,c log(sh,t) ∀ h, t, c (4)

For super-efficiency scores:

Em(S) = −ssup
h,t,c log

(
ssup

h,t

)
∀ h, t, c (5)

Information entropy mass at the hotel level per year per city:
For the inputs:

Em(X) = −∑i xi,h,c,t log(xi,h,c,t)

I
(6)

For the outputs:

Em(Y) = −∑o yo,h,c,t log(yo,h,c,t)

O
∀ h, t, c (7)

For the contextual variables:

Em(Z) = −∑v zv,h,c,t log(zv,h,c,t)

V
∀ h, t, c (8)

Conditional information entropy means per year per city:
For the inputs:

E.(X) = −∑i ∑h xi,h,t,c log(xi,h,t,c)

IH
∀ t, c (9)

For the outputs:

E.(Y) = −∑o ∑h yo,h,t,c log(yo,h,t,c)

OH
∀ t, c (10)

For the contextual variables:

E.(Z) = −∑v ∑h zv,h,t,c log(zv,h,t,c)

VH
∀ t, c (11)

Conditional joint entropy per city per year:
For the input-output pair:

JE.(X, Y) =
∑h[∑i ∑o xi,,h,t,cyo,h,t,c log(∑i ∑o xi,,h,t,cyo,h,t,c)]

OIH2 ∀ t, c (12)

For the input-contextual pair:

JE.(X, Z) =
∑h[∑i ∑v xi,,h,t,czv,h,t,c log(∑i ∑v xi,,h,t,czv,h,t,c)]

VIH2 ∀ t, c (13)

For the output-contextual pair:

JE.(Y, Z) =
∑h[∑o ∑v yo,h,t,czv,h,t,c log(∑o ∑v yo,,h,t,czv,h,t,c)]

VOH2 ∀ t, c (14)
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Conditional mutual information per city per year:
For the input-output pair:

MI.(X, Y) = E.(X) + E.(Y)− JE.(X, Y) (15)

For the input-contextual pair:

MI.(X, Z) = E.(X) + E.(Z)− JE.(X, Z) (16)

For the output-contextual pair:

MI.(Y, Y) = E.(Y) + E.(Z)− JE.(Y, Z) (17)

3.4. Least Absolute Shrinkage and Selection Operator Regression

The Least Absolute Shrinkage and Selection Operator relies upon the linear model
but uses an alternative fitting procedure for estimating the coefficients β0, β1, . . . , βp. This
procedure is more restrictive in estimating the coefficients, and sets a number of them to
exactly zero when the tuning parameter λ (penalty) is sufficiently large [77]. Hence, in
this sense the Least Absolute Shrinkage and Selection Operator is more interpretable than
linear models, because in the final model the response variable will only be related to a
small subset of the predictors. Selecting a good value of λ for the Least Absolute Shrinkage
and Selection Operator is critical; and cross-validation technique is often used. Equation
(18) gives the Least Absolute Shrinkage and Selection Operator model used in this research
to select a subset of information entropy related variables capable of explaining UK hotel
super-efficiency scores.

∑
t
(∑

h
Em(s) −β0 − β1E.(X)− β2E.(Y)− β3E.(Z)

−β4 Joint Entropy.(X, Y)− β5 Joint Entropy.(X, Z)
−β6 Joint Entropy.(Y, Z)− β7Mutual In f ormation.(X, Y)
−β8Mutual In f omation.(X, Z)
−β9Mutual In f ormation.(Y, Z))
+λ ∑9

j=1
∣∣β j
∣∣ = Residual Sum of Squares + λ ∑9

j=1
∣∣β j
∣∣

(18)

4. Analysis and Discussion of Results
4.1. Results

Results for the super-efficiency scores computed using the novel Modified Slack-Based
Model are depicted in Figure 2 (upper left). The bi-modal shape of super-efficiency scores
suggests the impact of distinct factors on UK hotel performance. As a matter of fact,
super-efficiency scores appear not only to be not only withdrawing to lower levels after
years of continuous increase (Figure 2 upper right), but also super-efficiency in UK hotels
appears to be a phenomenon restricted to a small subsample of cities, including those big
ones such as London and Manchester (Figure 2 lower). The reported efficiency level of the
current study is much higher than the one reported by [21]. This is mainly attributed to the
fact that these two studies used different time period and include different hotels in the
sample and most importantly, [21] used the traditional data envelopment analysis, while
the novel method we proposed benefits from the advantages of being able to address the
issue of negative output in the analysis, which is supposed to provide more accurate and
robust results.
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The super efficiency observed for the hotels in the UK big cities can be attributed to
the fact that big cities normally attract more inward tourist as well as outward tourist,
in addition to this, normally large hotel chains will choose the big cities to operate their
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business, they can achieve the economics of scale. Besides, it is worth noting that this
spatial-temporal heterogeneity captured by super-efficiency scores contributed to reduce
the epistemic uncertainty on how hotel efficiency is geographically distributed in UK over
the course of time. While mean information entropy slightly increased non-significantly
at p < 0.05 from traditional Data Envelopment Analysis models to the proposed Modified
Slack-Based Model (from 0.114 to 0.130), the dispersion of information entropy distributions
was dramatically reduced (Figure 3 upper left) as long as efficiency scores are no longer
asymmetrically concentrated towards 1.
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It is also interesting to note that information entropy on inputs, outputs, and contextual
variables also behave substantially different at the hotel level (Figure 3 upper right), a result
that persists when analyzed by year (Figure 3 lower left) and city (Figure 3 lower right).

Contextual, business-related, variables stand in between inputs and outputs in terms
of information entropy dispersion, thus suggesting that, although not so balanced or quasi-
uniformly distributed as the inputs at the hotel level, it is possible to learn from the market
dynamics relative to touristic in and outflows as well as from the financial strength of hotel
shareholders in UK, what may justify differences in cash flow generation potential and
liquidity indicators.

Spatial-temporal analysis of information entropy reveals that, while output informa-
tion entropy remained stagnant over the course of time, inputs and contextual variables
somewhat evolved in distinct directions. As long as input information entropy increased,
thus denoting that resource dimensioning has become a quite standardized planning at the
hotel level, contextual, business-related, variables information entropy sharply decreased,
therefore implying that market conditions with regard to tourism activity is increasingly of-
fering, over the course of time, the opportunities for learning and improving hotel efficiency
(Figure 3 bottom left and bottom right). As expected, a correlogram (Figure 4) among
information entropy related variables indicates that information entropy, joint-entropy,
and mutual information, although denoting different aspects of information reliability
are strongly associated, what calls for further analysis in terms of informational efficiency
drivers screening and selection.
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Least Absolute Shrinkage and Selection Operator regression results (Figure 5), follow-
ing the cross-validation steps presented in [77], identified one information variable of each
type as super-efficiency drivers in UK hotel operations: (i) output information entropy; (ii)
output/contextual mutual information; and (iii) input/output joint entropy.
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4.2. Discussions

As regards UK hotel productive resources, information entropy on inputs is much
wider than that with regard to outputs. This means that not only proportionally less can
be learnt from inputs than from outputs in order to improve efficiency levels, but also
that resource allocation—number of employees, depreciation/amortization, and cost of
goods sold—is more balanced—or quasi-uniformly distributed—at the hotel level than the
respective cash flow and liquidity generated as a product of the operating size. This finding
is new compared to previous empirical literature in hotel efficiency from the perspective
we do not only identify the level of efficiency, but more importantly, we can derive the
source of inefficiency from inputs and outputs. This also indicates that it would be more
difficult for the UK hotels to optimize the resources in a better way, rather than thinking
about the way of cutting the number of employees or reduce the cost of goods sold, UK
hotels should focus more on how to increase the revenue, increase the level of liquidity
and capitalization as well as reduce the volumes of expenses, which will be more effective
in increasing the level of efficiency in the UK hotel industry.

We can also understand the result from the perspective that controlling the outputs is
the most effective way to improve efficiency, while the general macroeconomic environment
or the development of the international tourism industry will also have a significant impact
on the efficiency level of UK hotels. This is in line with the findings of [78]. In addition, the
financial structure in the UK hotel will also affect the hotel efficiency in the UK to a certain
extent. However, [78] report that there was no significant impact of hotel financial structure
(i.e., capitalization). This is mainly attributed to the fact that different methodologies were
used in the analysis. more specifically, our propose of a Least Absolute Shrinkage and
Selection Operator is more interpretable and also the regression benefits from the ability
to select a subset of information entropy related variables capable of explaining UK hotel
super-efficiency scores.

Both variables (output information entropy and output/contextual mutual informa-
tion) presented a positive impact on super-efficiency scores, indicating that the distinctive
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characteristic of superior performance in UK hotel operations is the capability to match the
cash flow generation potential with market opportunities related to touristic in/outflow
within the ambit of feedback learning processes. On the other hand, the negative result for
input/output joint entropy reveals that input resource dimensioning imposes scale and
revenue elasticity constraints in light of output optimization.

As long as hotel operations are capital intensive, there is a great likelihood to exploit
market opportunities, derived from changes in touristic flows by operating in decreasing
returns to scale with continuous price discount policies to sustain liquidity and cash-flow
generation of the course of time. This is exactly the case in the UK hotel industry, for
instance, the hotels in the big cities such as London and Manchester, in the city center
area, there would be a number of different hotels located near each other offering similar
level/quality of accommodations/catering to the tourist, therefore we can deduce and
imagine that the capacity of hotels to accommodate the tourists is big enough, increase
the operational scale will not achieve the effect of cost saving, because of higher level of
competition among different hotels, they should consider the measurements or owned
policies to sustain their market share, one of the effect way would be reduce the price level
through providing discount the customers which is supposed to attract more people.

5. Conclusions

The economic growth across the globe, together with the increase in the volume of
Gross Domestic Product per capita make people have more disposable income. Besides the
traditional physical products demanded and consumed by the people, there is a general
trend of increasing in the consumption in the area of entertainment. In particular, people
spent more time and money on exploring new experience (for example, experience new
culture, new people, new food, new architecture, et cetera) through travelling to different
countries, this is mainly derived from the globalization in which countries they do not
only engage in trading with each other in tangible goods, but also in the areas of intangible
services such as the international tourism. The United Kingdom, together with Germany,
Italy and France, make up the four biggest economies in Europe. London, the capital city
of the United Kingdom, is the world largest financial center, which does not only attract
the influential financial institutions and companies to headquartered in, but also attract
many people to look around and pay a visit to this legendary city and country every year.

The hotel industry, one of the most important components of the hospitality sector
facilitate the development of the country’s international tourism industry by providing
accommodations and catering to both the local domestic people as well as the travelers
from all over the world. The performance of the hotel industry is very important from the
perspective that it will provide an indicator to the potential investors for their decision
to invest the money in this sector. For instance, large amount of profit in this sector will
attract more potential investors to enter into this industry, on the contrary, lower amount
of profits will divert more people to invest the money to other sectors of the economy.
For the existing hotel management and hotel practitioners, not only do they consider the
profit through their operation, but also, they concern the issue of how to reduce the cost
of operation through optimizing the resource allocation in the production process. In
addition to this, both the hotel companies and academic researchers have a great interest
in the factors which will influence the efficiency in the hotel industry, the latter devote a
large amount of effort by proposing different types of advanced methods to investigate the
efficiency of hotel companies.

Different from the empirical studies in related to the estimation of efficiency in the
hotel industry, we use a sample of UK hotels to significantly contribute to the area of
efficiency analysis by proposing a modified slack-based model to evaluate the level of
super-efficiency in addressing the issue of negative values of cash flow and liquidity
variables. We are also the pioneer to propose the Least Absolute Shrinkage and Selection
Operator to examine the influence of entropy related variables including both mutual
information and joint entropy on efficiency scores.
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The findings of our study suggest that less can be learnt from the input side to improve
the efficiency level in the UK hotel industry, while in comparison the results show that the
market dynamics in related to tourism inflow and outflow together with financial strength
of hotels in terms of total assets and shareholders’ funds have a higher explanatory power
in the efficiency level in the UK hotel industry. We provide important policy implications
to the UK hotel industry to improve the efficiency level: (1) the UK hotels should operate in
a decreasing return to scale (reduce the size of operations) and also implement the policy of
providing discount; (2) more focus should be given in the process of hotel management in
terms of how to further increase the level of revenue, therefore, probably a diversification
strategy could facilitate the achievement of this; (3) the UK hotels should further increase
the liquidity level and also enhance the level of capitalization; (4) the UK hotels should pay
attention to reduce the level of overhead costs, some of the areas that the hotels can focus
on related to the cost reduction include the administration cost, utilities cost, insurance
cost, marketing cost and maintenance cost.

The future research could use alternative advanced Data Envelopment Analysis
method to evaluate the efficiency in the UK hotel industry or use the advance Stochastic
Frontier Analysis to check and compare the robustness of our results, while the robustness
can be further checked by using alternative econometric techniques to test the influence of
the contextual and business-related variables on the efficiency score. Finally, the sample
could be expanded to including other European countries or compare the efficiency in the
hotel industry between UK and other Asian countries.

Author Contributions: Conceptualization, Y.T., A.J., A.H.-V., and P.W.; methodology, Y.T., A.J.,
A.H.-V., and P.W.; software, Y.T., A.J., A.H.-V., and P.W.; supervision, Y.T., A.J., A.H.-V., and P.W.;
writing—original draft, Y.T., A.J., A.H.-V., and P.W.; writing—review and editing, Y.T., A.J., A.H.-V.,
and P.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Deng, W.J.; Yeh, M.L.; Sung, M.L. A customer satisfaction index model for international tourist hotels: Integrating consumption

emotions into the American Customer Satisfaction Index. Int. J. Hosp. Manag. 2013, 35, 133–140. [CrossRef]
2. Kim, W.G.; Park, S.A. Social media review rating versus traditional customer satisfaction: Which one has more incremental

predictive power in explaining hotel performance. Int. J. Contemp. Hosp. Manag. 2017, 29, 784–802. [CrossRef]
3. Assaf, A.G.; Josiassen, A.; Cvelbar, L.K.; Woo, L. The effect of customer voice on hotel performance. Int. J. Hosp. Manag. 2015, 44,

77–83. [CrossRef]
4. Sun, K.; Kim, D. Does customer satisfaction increase firm performance? An application of American Customer Satisfaction Index.

Int. J. Hosp. Manag. 2013, 35, 68–77. [CrossRef]
5. Xie, K.L.; Zhang, Z.; Zhang, Z.; Singh, A.; Lee, S.K. Effects of managerial response on consumer eWOM and hotel performance:

Evidence from TripAdvisor. Int. J. Contemp. Hosp. Manag. 2016, 28, 2013–2034. [CrossRef]
6. Teixeira, S.J.; Ferreira, J.J.; Wanke, P.; Antunes JJ, M. Evaluation model of competitive and innovative tourism practices based on

information entropy and alternative criteria weight. Tour. Econ. 2019, 1354816619878995. [CrossRef]
7. Gonzalez-Serrano, L.; Talon-Ballestero, P.; Munoz-Romero, S.; Soguero-Ruiz, C.; Rojo-Alvarez, J.L. Entropic statistical description

of big data quality in hotel customer relationship management. Entropy 2019, 21, 419. [CrossRef]
8. Nicolau, J.L.; Santa-Maria, M.J. The effect of innovation on hotel market value. Int. J. Hosp. Manag. 2013, 32, 71–79. [CrossRef]
9. Graf, N.S. Market structure and demand-side sustainability of chained urban hotel segment. Int. J. Hosp. Manag. 2011, 30, 82–90.

[CrossRef]
10. Morrison, A.; Conway, F. The status of the small hotel firm. Serv. Ind. J. 2007, 27, 47–58. [CrossRef]
11. Park, K.; Jang, S. Effect of diversification on firm performance: Application of the entropy measure. Int. J. Hosp. Manag. 2012, 31,

218–228. [CrossRef]
12. Park, K.; Jang, S. Capital structure, free cash flow, diversification and firm performance: A holistic analysis. Int. J. Hosp. Manag.

2013, 33, 51–63. [CrossRef]
13. Barros, C.P. Measuring efficiency in the hotel sector. Ann. Tour. Res. 2005, 32, 456–477. [CrossRef]
14. Sanjeev, G.M. Measuring efficiency of the hotel and restaurant sector: The case of India. Int. J. Contemp. Hosp. Manag. 2007, 19,

378–387. [CrossRef]
15. Barros, C.P.; Dieke PU, C. Technical efficiency of African hotels. Int. J. Hosp. Manag. 2008, 27, 438–447. [CrossRef]

http://doi.org/10.1016/j.ijhm.2013.05.010
http://doi.org/10.1108/IJCHM-11-2015-0627
http://doi.org/10.1016/j.ijhm.2014.09.009
http://doi.org/10.1016/j.ijhm.2013.05.008
http://doi.org/10.1108/IJCHM-06-2015-0290
http://doi.org/10.1177/1354816619878995
http://doi.org/10.3390/e21040419
http://doi.org/10.1016/j.ijhm.2012.04.005
http://doi.org/10.1016/j.ijhm.2010.03.011
http://doi.org/10.1080/02642060601038643
http://doi.org/10.1016/j.ijhm.2011.03.011
http://doi.org/10.1016/j.ijhm.2013.01.007
http://doi.org/10.1016/j.annals.2004.07.011
http://doi.org/10.1108/09596110710757543
http://doi.org/10.1016/j.ijhm.2007.11.004


Entropy 2021, 23, 184 20 of 21

16. Chen, T. Performance measurement of an enterprise and business units with an application to a Taiwanese hotel chain. Int. J.
Hosp. Manag. 2009, 28, 415–422. [CrossRef]

17. Neves, J.; Lourenco, S. Using data envelopment analysis to select strategies that improves the performance of hotel companies.
Int. J. Contemp. Hosp. Manag. 2009, 21, 698–712. [CrossRef]

18. Assaf, A.; Josiassen, A.; Cvelbar, L.K. Does Triple Bottom Line reporting improve hotel performance? Int. J. Hosp. Manag. 2012,
31, 596–600. [CrossRef]

19. Manasakis, C.; Apostolakis, A.; Datseris, G. Using data envelopment analysis to measure hotel efficiency in Crete. Int. J. Contemp.
Hosp. Manag. 2013, 25, 510–535. [CrossRef]

20. Luo, H.; Yang, Y.; Law, R. How to achieve a high efficiency level of the hotel industry. Int. J. Contemp. Hosp. Manag. 2014, 26,
1140–1161. [CrossRef]

21. Ramanathan, R.; Ramanathan, U.; Zhang, Y. Linking operations, marketing and environmental capabilities and diversification to
hotel performance: A data envelopment analysis approach. Int. J. Prod. Econ. 2016, 176, 111–122. [CrossRef]

22. Anderson, R.I.; Fish, M.; Xia, Y.; Michello, F. Measuring efficiency in the hotel industry: A stochastic frontier approach. Int. J.
Hosp. Manag. 1999, 18, 45–57. [CrossRef]

23. Odeck, J.; Alkadi, A. Evaluating efficiency in the Norwegian bus industry using data envelopment analysis. Transportation 2001,
28, 211–232. [CrossRef]

24. Avkiran, N.K.; Rowlands, T. How to better identify the true managerial performance: State of the art using DEA. Omega 2008, 36,
317–324. [CrossRef]

25. Pestana, C.; Peypoch, N. Productivity changes in Portuguese bus companies. Transp. Policy 2010, 17, 295–302. [CrossRef]
26. Hossain, M.K.; Kamil, A.B.; Baten, M.A.; Mustafa, A. Stochastic frontier approach and data envelopment analysis to total factor

productivity and efficiency measurement of Bangladesh Rice. PLoS ONE 2012, 7, e46081. [CrossRef]
27. Assaf, A.; Barros, C.P.; Josiassen, A. Hotel efficiency: A bootstrapped metafrontier approach. Int. J. Hosp. Manag. 2010, 29, 468–475.

[CrossRef]
28. Medal-Bartual, A.; Garcia-Martin, C.; Sala-Garrido, R. Efficiency analysis of small franchise enterprises through a DEA metafron-

tier model. Serv. Ind. J. 2012, 32, 2421–2434. [CrossRef]
29. Pulina, M.; Detotto, C.; Paba, A. An investigation into the relationship between size and efficiency of the Italian hospitality sector:

A window DEA approach. Eur. J. Oper. Res. 2010, 204, 613–620. [CrossRef]
30. Huang, Y.; Mesak, H.I.; Hsu, M.K.; Qu, H. Dynamic efficiency assessment of the Chinese hotel industry. J. Bus. Res. 2012, 65,

59–67. [CrossRef]
31. Yang, H.H.; Chang, C.Y. Using DEA windows analysis to measure efficiencies of Taiwan’s integrated telecommunication firms.

Telecommun. Policy 2009, 33, 98–108. [CrossRef]
32. Sanchez JJ, V. Malmquist index with time series to data envelopment analysis. In Multi-Criteria Method and Techniques Applied to

Supply Chain Management; Salomon., V., Ed.; IntechOpen: London, UK, 2018; pp. 110–130.
33. Assaf, A.; Magnini, V. Accounting for customer satisfaction in measuring hotel efficiency: Evidence from the US hotel industry.

Int. J. Hosp. Manag. 2012, 31, 642–647. [CrossRef]
34. Assaf, A.; Cvelbar, K.L. Privatization, market competition, international attractiveness, management tenure and hotel performance:

Evidence from Slovenia. Int. J. Hosp. Manag. 2011, 30, 391–397. [CrossRef]
35. Senel, T.; Cengiz, M.A. A Bayesian approach for evaluation of determinants of health system efficiency using stochastic frontier

analysis and Beta regression. Comp. Math. Meth. Med. 2016, 1–5.
36. Chaabouni, S.; Abednnadher, C. Cost efficiency of Tunisian public hospitals: A Bayesian comparison of random and fixed frontier

models. J. Knowl. Econ. 2016, 7, 771–781. [CrossRef]
37. Keh, H.T.; Chu, S.; Xu, J. Efficiency, effectiveness and productivity of marketing in services. Eur. J. Oper. Res. 2006, 170, 265–276.

[CrossRef]
38. Klassen, K.J.; Rohleder, T.R. Combining operations and marketing to manage capacity and demand in services. Serv. Ind. J. 2001,

21, 1–30.
39. Shuai, J.; Wu, W. Evaluating the influence of E-marketing on hotel performance by DEA and grey entropy. Expert Syst. Appl. 2011,

38, 8763–8769. [CrossRef]
40. Zhang, L. An additive super-efficiency DEA approach to measuring regional environmental performance in China. INFOR Inf.

Syst. Oper. Res. 2017, 55, 211–226.
41. Cheng, H.; Lu, Y.C.; Chung, J.T. Improved slack-based context dependent DEA: A study of international tourists hotels in Taiwan.

Expert Syst. Appl. 2010, 37, 6452–6458. [CrossRef]
42. Rashidi, K.; Cullinane, K. Evaluating the sustainability of national logistics performance using data envelopment analysis. Transp.

Policy 2019, 74, 35–46. [CrossRef]
43. Hsieh, L.F.; Lin, L.H. A performance evaluation model for international tourist hotel in Taiwan: An application of the relational

network DEA. Int. J. Hosp. Manag. 2010, 29, 14–24. [CrossRef]
44. Zhang, Q.; Ma, J.H. Research on business efficiency of hotel and tourism enterprises based on the influence of innovation factors.

Energy Procedia 2011, 5, 742–746.
45. Fukuyama, H.; Weber, W. Measuring Japanese bank performance: A dynamic network DEA approach. J. Prod. Anal. 2015, 44,

249–264. [CrossRef]

http://doi.org/10.1016/j.ijhm.2008.10.010
http://doi.org/10.1108/09596110910975963
http://doi.org/10.1016/j.ijhm.2011.08.005
http://doi.org/10.1108/09596111311322907
http://doi.org/10.1108/IJCHM-01-2013-0050
http://doi.org/10.1016/j.ijpe.2016.03.010
http://doi.org/10.1016/S0278-4319(98)00046-2
http://doi.org/10.1023/A:1010333518966
http://doi.org/10.1016/j.omega.2006.01.002
http://doi.org/10.1016/j.tranpol.2010.02.003
http://doi.org/10.1371/journal.pone.0046081
http://doi.org/10.1016/j.ijhm.2009.10.020
http://doi.org/10.1080/02642069.2012.677829
http://doi.org/10.1016/j.ejor.2009.11.006
http://doi.org/10.1016/j.jbusres.2011.07.015
http://doi.org/10.1016/j.telpol.2008.11.001
http://doi.org/10.1016/j.ijhm.2011.08.008
http://doi.org/10.1016/j.ijhm.2010.03.012
http://doi.org/10.1007/s13132-015-0245-8
http://doi.org/10.1016/j.ejor.2004.04.050
http://doi.org/10.1016/j.eswa.2011.01.086
http://doi.org/10.1016/j.eswa.2010.02.142
http://doi.org/10.1016/j.tranpol.2018.11.014
http://doi.org/10.1016/j.ijhm.2009.04.004
http://doi.org/10.1007/s11123-014-0403-1


Entropy 2021, 23, 184 21 of 21

46. Chen, Y.; Cook, W.D.; Kao, C.; Zhu, J. Network DEA pitfalls: Divisional efficiency and frontier projection under general network
structures. Eur. J. Oper. Res. 2013, 226, 507–515.

47. Shang, J.K.; Wang, F.C.; Hung, W.H. A stochastic DEA study of hotel efficiency. Appl. Econ. 2010, 42, 2505–2518. [CrossRef]
48. Sellers-Rubio, R.; Casado-Diaz, A.B. Analyzing hotel efficiency from a regional perspective: The role of environmental determi-

nants. Int. J. Hosp. Manag. 2018, 75, 75–85. [CrossRef]
49. El-Dermerdash, B.E.; El-Khodary, I.A.; Tharwat, A.A. Developing a stochastic input oriented data envelopment analysis (SIODEA)

model. Int. J. Adv. Comp. Sci. Appl. 2013, 4, 40–44.
50. Yu, M.; Lee BC, Y. Efficiency and effectiveness of service business: Evidence from International tourists hotels in Taiwan. Tour..

Manag. 2009, 30, 571–580. [CrossRef]
51. Zhao, Y.; Triantis, K.; Murray-Tuite, P.; Edara, P. Transport. Res. E-log. 2011, 47, 1140–1159.
52. Yin, P.; Tsai, H.; Wu, J. A hotel life cycle model based on bootstrap DEA efficiency. Int. J. Contemp. Hosp. Manag. 2015, 27, 918–937.

[CrossRef]
53. Cheng, Z.; Cai, M.; Tao, H.; He, Z.; Lin, X.; Lin, H.; Zuo, Y. Efficiency and productivity measurement of rural township hospitals

in China; A bootstrapping data envelopment analysis. BMJ Open 2016, 6, 1–10. [CrossRef] [PubMed]
54. Benito, B.; Solana, J.; Lopez, P. Determinants of Spanish regions’ tourism performance: A two-stage, double bootstrap data

envelopment analysis. Tour. Econ. 2014, 20, 987–1012. [CrossRef]
55. Guccio, C.; Lisi, D.; Martorana, M.; Mignosa, A. On the role of cultural participation in tourism destination performance: An

assessment using robust conditional efficiency approach. J. Cult. Econ. 2017, 41, 129–154. [CrossRef]
56. Barros, C.P.; Santos, C.A. The measurement of efficiency in Portuguese hotels with DEA. J. Hosp. Tour. Res. 2006, 30, 378–400.

[CrossRef]
57. Detotto, C.; Pulina, M.; Brida, J.G. Assessing the productivity of the Italian hospitality sector: A post-WDEA pooled truncated

and spatial analysis. J. Prod. Anal. 2014, 42, 103–121. [CrossRef]
58. Brida, J.G.; Garrido, M.; Deidda, M.; Pulina, M. Exploring the dynamics of the efficiency in the Italian hospitality sector. A

regional case study. Expert Syst. Appl. 2012, 39, 9064–9071. [CrossRef]
59. Barros, C.P. Evaluating the efficiency of small hotel chain with a Malmquist productivity index. Int. J. Tour. Res. 2005, 7, 173–184.

[CrossRef]
60. Barros, C.P.; Alves, P. Productivity in tourism industry. Int. Adv. Econ. Res. 2004, 10, 215–225. [CrossRef]
61. Anderson, R.I.; Fok, R.; Scott, J. Hotel industry efficiency: An advanced linear programming examination. Am. Bus. Rev. 2000, 18,

40–48.
62. Morey, R.C.; Dittman, D.A. Evaluating a hotel GM’s performance: A case study in benchmarking. Cornell Hotel Rest. Adm. Q.

1995, 36, 30–35. [CrossRef]
63. Sun, S.; Lu, W.M. Evaluating the performance of the Taiwanese hotel industry using a weight slacks-based measure. Asia Pac. J.

Oper. Res. 2005, 22, 487–512. [CrossRef]
64. Wang, Y.H.; Lee, W.F.; Wong, C.C. Productivity and efficiency analysis of international tourist hotels in Taiwan: An application of

the stochastic frontier approach. Taiwan Econ. Rev. 2007, 35, 55–86.
65. Tsaur, S.H. The operating efficiency of international tourist hotels in Taiwan. Asia Pac. J. Tour. Res. 2001, 6, 73–87. [CrossRef]
66. Reynolds, D. Hospitality- productivity assessment using data envelopment analysis. Cornell Hotel Rest. Adm. Q. 2003, 44, 130–137.
67. Schefczyk, M. Operational performance of airlines: An extension of traditional measurement paradigms. Strat. Manag. J. 1993, 14,

301–317. [CrossRef]
68. Chen, M. The response of hotel performance to international tourism development and crisis event. Int. J. Hosp. Manag. 2011, 30,

200–212. [CrossRef]
69. Wu, J.; Tsai, H.; Zhou, Z. Improving efficiency in international tourism hotels in Taipei using a non-radial DEA model. Int. J.

Contemp. Hosp. Manag. 2011, 23, 66–83. [CrossRef]
70. Peypoch, N. On measuring tourism productivity. Asia Pac. J. Tour. Res. 2007, 12, 237–244. [CrossRef]
71. Chen, M. The economy, tourism growth and corporate performance in the Taiwanese hotel industry. Tour. Manag. 2010, 31,

665–675. [CrossRef]
72. Sharp, J.A.; Meng, W.; Liu, W. A modified slacks-based measure model for data envelopment analysis with ‘natural’ negative

outputs and inputs. J. Oper. Res. Soc. 2007, 58, 1672–1677. [CrossRef]
73. Núñez, J.A.; Cincotta, P.M.; Wachlin, F.C. Information entropy. Celest. Mech. Dyn. Astron. 1996, 64, 43–53. [CrossRef]
74. Archer, E.; Park, M.; Pillow, J.W. Bayesian entropy estimation for binary spike train data using parametric prior knowledge. NIPS

2013, 26, 1700–1708.
75. Massey, J. Causality, Feedback and Directed Information. In Proceedings of the 1990 International Symposium on Information

Theory and Its Applications, Waikiki, HI, USA, 27–30 November 1990; pp. 27–30.
76. Permuter, H.H.; Weissman, T.; Goldsmith, A.J. Finite State Channels with Time-Invariant Deterministic Feedback. IEEE Trans. Inf.

Theory 2009, 55, 644–662. [CrossRef]
77. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York,

NY, USA, 2013.
78. Tan, Y.; Despotis, D. Investigation of efficiency in the UK hotel industry: A network data envelopment analysis approach. Int. J.

Contemp. Hosp. Manag. 2021, forthcoming.

http://doi.org/10.1080/00036840701858091
http://doi.org/10.1016/j.ijhm.2018.03.015
http://doi.org/10.1016/j.tourman.2008.09.005
http://doi.org/10.1108/IJCHM-12-2013-0562
http://doi.org/10.1136/bmjopen-2016-011911
http://www.ncbi.nlm.nih.gov/pubmed/27836870
http://doi.org/10.5367/te.2013.0327
http://doi.org/10.1007/s10824-017-9295-z
http://doi.org/10.1177/1096348006286798
http://doi.org/10.1007/s11123-013-0371-x
http://doi.org/10.1016/j.eswa.2012.02.045
http://doi.org/10.1002/jtr.529
http://doi.org/10.1007/BF02296216
http://doi.org/10.1016/S0010-8804(03)90107-8
http://doi.org/10.1142/S0217595905000595
http://doi.org/10.1080/10941660108722090
http://doi.org/10.1002/smj.4250140406
http://doi.org/10.1016/j.ijhm.2010.06.005
http://doi.org/10.1108/09596111111101670
http://doi.org/10.1080/10941660701416812
http://doi.org/10.1016/j.tourman.2009.07.011
http://doi.org/10.1057/palgrave.jors.2602318
http://doi.org/10.1007/BF00051604
http://doi.org/10.1109/TIT.2008.2009849

	Introduction 
	Literature Review 
	Methodology 
	The Data 
	The Novel Modified Slack-Based Model 
	Preliminaries 
	The Proposed Model 

	Novel Modified Slack-Based Data Envelopment Analysis Applied to UK Hotel Efficiency 
	Least Absolute Shrinkage and Selection Operator Regression 

	Analysis and Discussion of Results 
	Results 
	Discussions 

	Conclusions 
	References

