Available online at http://docs.lib.purdue.edu/jate

JATE

Journal of Aviation Technology and Engineering 7:2 (2018) 15-31

Efficiency Driver in Nigerian Airports: A Bootstrap DEA—Censored Quantile
Regression Approach

Obioma Reuben Nwaogbe

Department of Transport Management Technology, Federal University of Technology, Minna, Nigeria

Peter Wanke

COPPEAD Graduate Business School, Federal University of Rio de Janeiro

Innocent Chukwuka Ogwude

Department of Transport Management, Federal University of Technology Owerri State Nigeria

Carlos Pestana Barros

Instituto Superior de Economia e Gestdo, University of Lisbon

Abul Kalam Azad

Department of Applied Statistics, Faculty of Economics and Administration, University of Malaya

Abstract

This paper reports on the use of a novel two-stage approach for assessing the efficiency of 30 major Nigerian airports from 2003 to
2013 based on bootstrapped data envelopment analysis (DEA) and censored quantile regression. In the first stage, bootstrapped efficiency
estimates are computed. They enable bias correction and testing for significant differences in efficiency levels among airports. Sub-
sequently, bootstrapped DEA results are combined with censored quantile regression to assess the impact of contextual variables—related
to the airports’ ownership, location, and network connectivity—on different efficiency percentiles. The results reveal that the intensity
of significant impacts regarding airports’ contextual variables may vary between high-/low-efficiency airports. Policy implications are
derived accordingly.
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Introduction

Research on airport efficiency has adopted several
methods, such as the factor productivity approach;
stochastic frontier analysis (SFA) models (Barros, 2009;
Diana, 2010); the Turnquist total factor productivity index;
and data envelopment analysis (DEA) models (Adler &
Berechman, 2001; Barros & Dieke, 2008; Gillen &
Lall, 1997; Titko, Stankeviciené, & Lace, 2014). Previous
studies analyzed airports from different countries and
regions worldwide. However, the most commonly analyzed
are usually European and North American airports, while
African airports are rarely investigated (Barros, 2014;
Wanke, Barros, & Nwaogbe Obioma, 2016). This paper
adds to the current body of knowledge by analyzing the
efficiency of Nigerian airports using a novel two-stage
model built upon bootstrapped DEA and censored quantile
regression (CQR).

The motivations for the present research are twofold.
First, despite intense research on airport efficiency, few
international peer-reviewed papers tackle Nigerian airports
(Wanke et al., 2016). Whilst some data on remote Nigerian
airports have been published (Bréathen, 2016), the focus on
African airports, in a broader sense, remains a research gap
with few papers published on the issue (Barros, 2014),
which would bring an important contribution to the overall
analysis of airport efficiency. A major reason for this
under-researched context is that the Air Transport Research
Society Airport Benchmark Annual Report does not present
data on African airports. The second motivation for the
present study is the highly significant role of the air
transportation industry in Nigeria, due to the fact that it
does not have any other competitor in terms of speed and
safety for passengers and cargo shipment around the
country.

Besides, this paper is innovative in the literature of
airport efficiency at the country level by adopting a two-stage
bootstrapped DEA—-CQR approach. Basically, the relative
performance of Nigerian airports is evaluated with respect
to distinct efficiency percentiles, assessing, for instance,
how different contextual variables related to ownership,
location, and network coverage differently impact high-
and low-efficiency airports. In this research, this two-stage
approach is carried out for the first time on airport effi-
ciency. This being the case, policy implications are derived
for different percentiles of efficiency levels. Therefore, this
paper contributes to the literature on airport efficiency, not
only by analyzing the airports of the most populous African
country, but also by using bootstrapped DEA-CQR for the
first time in this context.

The remainder of this paper is organized as follows.
The next section presents the contextual setting of airports
in Nigeria. This is followed by a literature review, and then
a section containing the data and the methodology. The
empirical results are then presented and discussed in terms

of policy implications, while the conclusions are outlined in
the final section.

Contextual Setting

Nigeria is a West African country and a former British
colony that attained self-government in 1960. In 1967, the
country adopted a subdivision into a twelve-state structure.
In 1976, the number of regions increased to nineteen states;
twenty-one in 1987; thirty in 1991; and, since 1996, it has
been comprised of thirty-six states. During colonial times
there were only three airports: Lagos, Kano, and Maiduguri.
Nigeria currently has twenty-one airports, five of which
are international airports. The international airports are the
Murtala Muhammed Airport in Lagos, where the seat of
government was established until 1991; the Aminu Kano
Airport in Kano, a commercial hub city; the Kaduna, at
Port Harcourt; and the Abuja airports. The last two cities
have a high volume of commercial activities, and Abuja is
currently the federal capital.

Nigerian airport facilities are old or poorly maintained,
with an aging workforce. There is a poor level of opera-
tional efficiency and safety (Wanke et al., 2016). In 2006,
the government promulgated the Civil Aviation Act in
order to overcome these organizational problems. The
airports are managed by the Federal Airports Authority of
Nigeria (FAAN), an entity established in 1995. In 1999,
another restructuring took place in order to conform to the
International Civil Aviation Organization, enabling then the
separation of regulatory bodies from service providers.
Table 1 presents some characteristics of the physical pro-
duction of Nigerian airports as of 2013. Furthermore, the
airports are divided into domestic and international airports,
as a result of a decision of the Federal Government of
Nigeria. Therefore, researchers have to adopt the way the
airports were set up by the government.

Literature Review

There are a growing number of studies focusing on
airport efficiency (Diana, 2010). Specifically, there are two
dominant schools of methodology for assessing efficiency:
the mathematical programming approach, which is well
known by the DEA method and its variations; and the
SFA approach, which has its roots in econometric theory
(Bogetoft & Otto, 2010). In detail, while the slack analysis
of DEA provides insight on resources to improve efficiency
discrimination, the SFA method focuses on the economic
justification of a given production function. Besides, SFA
implies some advantages over DEA as well as disadvan-
tages because of its parametric characteristics, where some
distributional assumptions are made regarding the error and
the inefficiency terms. DEA, on the other hand, has some
key advantages over SFA due to its nonparametric—
distribution free—characteristics and due to the capability



O. R. Nwaogbe / Journal of Aviation Technology and Engineering 17

Table 1
Characteristics of Nigerian airports analyzed in 2013.

No. Obs Airports No. of Passengers (000) No. of Aircraft (000) Terminal Capacity (Pax) No. of Employees
1 ABJ DOM 3,015,803 48,561 252 808
2 ABJ INT'L 854,129 8,592 320 934
3 AKURE 8,789 1,254 40 72
4 BENIN 217,254 4,504 250 95
5 CAL DOM 172,810 3,126 108 153
6 CAL INT'L 234 13 100 116
7 ENUGU 225915 3,631 300 149
8 IBADAN 56,959 2,915 250 87
9 ILO DOM 52,938 2,479 202 72
10 ILO INT’L 0 0 200 111
11 JOS 47,910 1,202 250 121
12 KAD DOM 144,583 3,471 285 107
13 KAD INT'L 22,785 138 250 153
14 KAN DOM 202,934 5,117 600 466
15 KAN INT’L 127,824 1,803 640 532
16 MKD 1,117 289 63 43
17 MAID DOM 72,301 1,386 200 168
18 MAID INT’L 11,935 80 50 130
19 MMA DOM 3,454,250 65,006 615 1252
20 MMA INT’L 3,395,872 31,543 3675 1390
21 PHC DOM 1,113,183 20,782 518 360
22 PHC INTL 129,176 2,845 700 299
23 SOK DOM 78,377 2,161 194 54
24 SOK INT 32,088 103 250 78
25 YOLA DOM 123,421 3,172 108 124
26 YOLA INT’L 8,260 43 120 127
27 MINNA 8,789 520 1000 101
28 KAT 2,456 475 120 119
29 OWERRI 279,609 4,560 800 131
30 OSUBI 246,560 8,256 65 20

Mean 463,041 7,601 418 279
Median 75,339 2,662 250 126
Std Dev 990,423 15,049 662 356

Source: FAAN.

of simultaneously handling several outputs. Nevertheless,
DEA falls short with respect to the necessary statistical
properties for a robust examination of the inefficiency roots
when using contextual variables. Bootstrapping, however,
is one of the most attractive solutions to overcome this
major DEA shortcoming, i.e., no statistical properties
(Assaf, 2010). A summary of DEA-based airport efficiency
studies is presented in Table 2 along with some of their
major features: inputs and outputs used, number of decision-
making units (DMUs) analyzed, country of study, data nature
(cross-sectional or longitudinal), and the methodology.

The first study on airport efficiency using DEA was
conducted by Schefczyk (1993). In a survey paper, Liu,
Lu, Lu, and Lin (2013) reported that DEA papers on
transportation—mainly related to airport efficiency—account
for almost 8% of total DEA papers. An overview of major
airport efficiency can be found in Yu (2010). More recently,
a detailed literature review of 45 years of airport perfor-
mance measurement is given in Bezerra and Gomes (2016).
Broadly speaking, and in accordance with those authors,
these studies are mainly focused on (1) examining airport
efficiency to measure benchmarks for monitoring airport

operations; (2) examining contextual variables for explain-
ing airport performance; and (3) measuring capacity excess
or shortfall in terms of input and output slacks (Wanke
et al., 2016). Furthermore, Barros, Wanke, Nwaogbe, and
Azad (2017) studied the efficiency in Nigerian airports
using a stochastic frontier model by adopting the methodo-
logy presented in Alvarez et al. (2004)—the AAG model.
The study findings show that under a modified version of
the AAG model, inputs and outputs are separated in frontier
and allowing contextual variables to control the impacts
of managerial ability on efficiency. Also, the variation in
efficiency scores is more sensitive to labor than to capital
costs, and it also indicates a negative impact of regulation
and hub operations on efficiency levels.

A closer look within each paper reveals that the most
common inputs are employees, terminal area or capacity,
runways, various kinds of assets, and costs; while the most
frequent outputs encompass revenues, profits, movements
(landings and take-offs), and passenger throughput. Therefore,
in this research, as the inputs, we use the terminal capacity
(in pax/year), the runway dimensions (in m?), the number of
employees, the total assets (in current NGN), and the total
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costs (in current NGN per year). The outputs used involve the
passenger throughput per year and the number of aircraft
movements per year. It is important to notice that so far
no study has adopted simultaneously bootstrapped DEA and
CQR in a two-stage approach. Furthermore, no research has
performed such analysis focusing on the airport industry at the
country level, an additional uniqueness of this paper.

Methodology
The Data

The data on 30 Nigerian airports were obtained from
FAAN and encompass the period from 2003 to 2013.
The inputs and the outputs selected were not only those
commonly found in the literature review but also those
dependent on data availability. The input variables included
terminal capacity (in pax/year), the runway dimensions
(in mz), the number of employees, the total assets (in current
NGN), and the total costs (in current NGN per year). The
output variables were the passenger throughput per year
and the number of aircraft movements per year. The descrip-
tive statistics are shown in Table 3.

An additional four contextual and business-related
variables were collected to explain differences in the effi-
ciency levels. These variables are also presented in Table 3
and are related to major elements of the airport cost
structure—(1) labor cost (measured as the total wages/
number of employees ratio); (2) capacity cost (measured as
the total assets/terminal capacity ratio); and (3) movement
cost (measured as the total costs/total landings and take-
offs ratio)—and the airport regulation which is a dummy
variable for the period that the regulation was adopted.
Linear and squared trend components were also considered
in the analysis.

This sample of 30 DMUs is comparable in size to
similar DEA applications, as presented in Table 2—mean
of 37 DMUs per study. According to Cooper et al. (2001),

the number of DMUs is a relevant issue when using DEA
as the cornerstone methodology. It should be at least three
times higher than the number of inputs and outputs.

Correlation analyses indicate significant positive rela-
tionships between the inputs and the outputs, which are,
therefore, isotonic and justified to be included in the model
(Marques & Simoes, 2010). A correlogram for the matrix
of inputs and outputs is presented in Figure 1. The Figure 1
correlation analysis for thirty Nigerian airports shows various
significant relationships between the inputs and output cor-
relation matrix. This correlation matrix will inform the
government on various policy implications for the relation-
ships that exist between the input and the output variables.

Contextual variables presented in Table 3 relate to
the airport network connectivity, whether the airport is a
hub (1) or is not a hub (0); whether the airport operates
international flights (1) or does not operate international
flights (0); to the airport location, whether the airport is
located in large metropolitan areas (1, above 2.5 million
inhabitants) or small metropolitan areas (0, below 2.5
million inhabitants); whether the airport is seashore located
(1, up to 35 km from the seashore) or inland located
(0, beyond 35 km from the seashore); whether the airport
ownership is private (1) or public (0). Linear and squared
trend components were also considered.

There are several reports in the literature relating the
positive and statistically significant impact on airport effi-
ciency of such variables. Gillen and Lall (1997), Sarkis
(2000), Bazarghan and Vasigh (2003), and Barros and
Dieke (2008) found a positive impact of hub and spoke
network models on airport efficiency. The basic idea is that
the location of a hub at an airport greatly increases many air-
port output measures, including revenue and passenger flows.

The same occurs with international airports (Barros &
Dieke, 2008; Tsekeris, 2011), since in some ways they
operate as a hub for the surrounding region, which may
be touristic or metropolitan. Furthermore, and for similar
reasons, location in populated and/or wealthy areas, close

Table 3
Summary statistics for the sample.
Variables Min. Max. Mean SD
Inputs Terminal capacity (pax/year) 40 3,675 418 662
Runway dimension (m?) 81,000 1,213,435 190,540 200,792.8
Number of employees 20 1,390 279 356
Total assets (current NGN) 15,881,0721.3 78,345,380,972 8,934,796,863 15,555,864,757
Total costs (current NGN per year) 2283221.04 4,354,835,610 548,697,247.8 921,899,168.5
Outputs Passenger throughput (pax per year) — 3,454,250 463,041 990,423
Aircraft movements (per year) — 65,006 7,601 15,049
Contextual Trend Linear 1.00 11.00 6.00 3.17
variables component Squared 1.00 121.00 46.00 39.02
Ownership Private — 1.00 0.03 0.18
Location Seashore — 1.00 0.23 0.42
Large metropolitan
area — 1.00 0.63 0.48
Network Hub — 1.00 0.13 0.34
connectivity International flights — 1.00 0.33 0.47
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Figure 1. Graphic correlogram for the matrix of inputs and outputs.

to the seashore, may also affect airport efficiency (Martin
& Roman, 2001; Tsekeris, 2011) once these areas gene-
rate a natural demand for airport services (Barros &
Dieke, 2008).

An important underlying assumption considered by
those authors is that these contextual variables are exo-
genous, that is, they affect efficiency levels without being
affected by them. Here, hub, international, large metro-
politan area, seashore, and private represent, therefore,
decision variables based on FAAN’s discretion rather than
endogenous variables generated within the ambit of an
efficiency model or a production process.

Data Envelopment Analysis

DEA is a nonparametric model first introduced by
Charnes et al. (1978; Cooper et al., 2001; Wang et al.,
2011). It is based on linear programming and is used to
address the problem of calculating relative efficiency for
a group of DMUs by using multiple measures of inputs and
outputs. Given a set of DMUs, inputs, and outputs, DEA
determines for each DMU a measure of efficiency obtained
as a ratio of weighted outputs to weighted inputs.

Consider a set of n observations on the DMUs: each
observation, DMU; (j=1,...,n), uses m inputs x; (=1,...,m)
to produce s outputs y,; (r=1,...,5). DMU, represents one
of the n DMUs under evaluation, and x;, and y,, are the
i input and " output for DMU,, respectively. Table 4
presents the envelopment model for the varying returns to
scale (VRS) frontier type, where ¢ is a non-Archimedian
element and s; and s, account, respectively, for the input
and output slack variables (Bazarghan and Vasigh, 2003;
Zhu, 2003).

Despite the fact that the orientation of the model is not
a consensual aspect of the efficiency models in airports

Table 4
DEA output-oriented envelopment model.

Frontier Type Envelopment Model

m 5
maxd—e( > 57+ >, 57
i—1 r—1

s.t.

E ),jx,;,- +s5; = Xjy,Vi (1)
Jj—=1

Z }i/'yrjfsiJr =¢yro,vr
i
1 >0.]

j—1

VRS, also known as
BCC (Banker
et al., 1984)

(Marques & Simoes, 2010) (refer to Table 2), an output
maximization orientation is adopted here. Under these circum-
stances, decision-makers should attempt to maximize pro-
duction outputs for a given level of inputs, supposedly
fixed in the short term. Regardless, the output-increasing
potential should be always interpreted with care, since in
the absence of demand it may be meaningless (Odeck &
Alkadi, 2001).

Bootstrapping

Nonparametric efficiency estimators such as DEA typi-
cally rely on linear programming techniques for computa-
tion of estimates, and are often characterized as deterministic,
as if to suggest that the methods lack any statistical under-
pinnings (Simar & Wilson, 2004). Applied studies that
have used these methods have typically presented point
estimates of inefficiency, with no measure or even discus-
sion of uncertainty surrounding these estimates (Cesaro
et al., 2009). Indeed, many papers contain statements where
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efficiency is described as being computed or calculated as
opposed to being estimated, and results are frequently
referred to as efficiencies rather than efficiency estimates
(Ray, 2010; Zarepisheh et al., 2010).

The choice of terminology in describing the nonpara-
metric efficiency approaches and their results is perhaps
understandable given, until very recently, the lack of a
“tool box” with aids for diagnostics, inference, etc., such as
the one available to researchers using parametric approaches
(Simar & Wilson, 2004). To solve these problems, boot-
strap techniques have been introduced into DEA analysis
(Cesaro et al., 2009). The bootstrap technique permits the
sensitivity of efficiency scores relative to the sampling
variation of the frontier to be analyzed, avoiding problems
of asymptotic sampling distributions.

DEA results, in fact, may be affected by sampling varia-
tion in the sense that distances to the frontier are under-
estimated if the best performers in the population are not
included in the sample. To account for this, Simar and
Wilson (1998, 2000) originally proposed a bootstrapping
method that relies on smoothing the empirical distribution,
allowing the construction of confidence intervals for DEA
efficiency scores. This technique consists of a simulation
of a true sampling distribution by mimicking a data gener-
ating process, using the outputs from DEA. In this way,
a new dataset is created and DEA is re-estimated using
this dataset. Repeating the process many times allows the
achievement of a good approximation of the true distribu-
tion of the sampling (Cesaro et al., 2009).

Generally speaking, statistical inference based on a non-
parametric frontier approach may be useful to determine
whether a productive unit is actually operating at its most
productive scale size or not. When a productive unit is found
to be operating in the region of increasing returns to scale,
an implied judgment is that it is smaller than its optimal
size (Ray, 2010). Similarly, a firm operating in the region of
diminishing returns to scale is considered to be too large.

The method used in this research departs from that
presented by Simar and Wilson (2004, which adapted the
bootstrap methodology to the case of DEA efficiency
estimators and uses a Gaussian kernel density function for
random data generation. All the computations were carried
out with R codes developed by the authors; 200 bootstrap
replications were performed on model (1), following the
discussion presented by Simar and Wilson (1998, 2004)
and Curi et al. (2011) on deriving statistical properties for
each airport vis-a-vis bias estimation, and central tendency
correction.

Censored Quantile Regression

Traditional regression models cannot answer an impor-
tant question: “do contextual variables influence efficiency
levels differently for low-efficiency Nigerian airports and
for those with high or average efficiency levels?” A more

comprehensive picture of the effect of the contextual
variables on the efficiency levels can be obtained via CQR.
Quantile regression models the relation between a set of
contextual variables and specific percentiles (or quantiles)
of the response variable. It specifies changes in the
quantiles of the efficiency. For example, a median regres-
sion (50th percentile) of efficiency on an airport’s con-
textual variables specifies the changes in the median
efficiency as a function of these predictors. In this sense,
the effect of private ownership on median efficiency levels
can be compared to its effect on other quantiles of
efficiency in Nigerian airports. As a matter of fact, the
quantile regression parameter estimates the change in a
specified quantile of the response variable produced by a
one unit change in the predictor variable. This allows com-
parison of how some percentiles of the efficiency levels
may be more affected by certain airport characteristics or
contextual variables than other percentiles. This is reflected
in the change in the size of the regression coefficient.

According to Leng and Tong (2013), the quantile
regression was introduced by Koenker and Bassett (1978)
and has become an increasingly important tool in statistical
analysis. They have actually introduced the general quan-
tile regression estimation that became the most popular
approach (Hong & Chernozhukov, 2002). Contrary to the
usual model for the conditional mean, it provides distri-
butional information on the dependence of 7 on Z. The Tth
conditional quantile function of the dependent variable T
given covariates Z, Q7 (7T1Z), is defined as Q(71Z) =
inf{v: Fo(vIZ) = T}, where F|, is the cumulative conditional
distribution function of T given Z. Correspondingly,
a quantile regression model for Q7 (T'1Z) with T € (0, 1) can
be denoted as

Or(T|2)=PrZ. (2)

When data are subject to censoring, statistical estimation
and inference for quantile regression are more involved.
Indeed, a naive procedure which completely ignores censor-
ing may give highly biased estimates (Koenker and d’Orey,
1987). Equivariance to monotone transformations is an impor-
tant property of quantile regression models (Powell, 1986).

Powell (1984, 1986) first studied CQR with fixed censor-
ing. For random censoring, Ying et al. (1995) proposed
a semiparametric median regression model. Despite the
simplicity of their method, this procedure requires the uncon-
ditional independence of the survival time and censoring
time. This assumption is often restrictive as conditional
independence, given the covariates, is more natural
(Kalbfleisch & Prentice, 2002). In addition, the estimating
equation approach proposed in Ying et al. (1995) involves
solving non-monotone discrete equations, creating dif-
ficulty for optimization. As a consequence, inferential
procedures such as the resampling approach in Jin et al.
(2001), or the bootstrap method, can be computationally
prohibitive.
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Figure 2. Efficiency levels grouped by year and by airports.

Hong and Chernozhukov(2002) argue that the CQR
models allow covariates to shift location, scale, and the
entire shape of the distribution and permit distribution-free
specifications. As such, CQR models compare favorably
to the normal Amemiya—Tobin, Cox, Buckley—James, and
other approaches. According to the authors, in this model,
the latent variable Y/ is left censored by the observable,

1
possibly random, censoring points Ci, and we observe

Yi=YVC(C.X;,Coi=1(Y;=C) (3)
Y*

;is assumed to be conditionally independent of the
censoring point C;; that is, for all y € IR,

P(Y* <y|Xi,C)=P(Y" <y|X)),s0 that Oy y,c(T|Z2)=prZ (4)

Conditioning on C;, equation (5), and the equivariance
transformation yield the following CQR model (Powell,
1986):

Ov,x.cri2=PBrZVC; (5)

Results and Discussion

The efficiency levels calculated for 30 Nigerian airports
from 2003 to 2013, using bootstrapped DEA and consider-
ing different grouping criteria, are given in Figures 2, 3,
and 4. More precisely, in Figure 2 (top), bootstrapped DEA
scores are grouped by year, and in Figure 2 (bottom) these
scores are shown by airport. It is worth noting that,
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Figure 3. Efficiency levels grouped by airport over the course of time.
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Figure 4. Bootstrapped DEA efficiency scores by contextual variables.

although median efficiency levels are quite stable over the
analyzed period (Kruskal-Wallis test for median differ-
ences did not show significant results), substantial dif-
ferences come to light when efficiency levels are grouped
by airport.

A clear picture emerges when efficiency levels are
grouped by airport and year (cf. Figure 3). Fluctuations in
efficiency levels appear to be very high not only within
some airports—apparently it is not possible to infer a
growing trend for the majority of them—but also between
them. This suggests the eventual impact of contextual
variables that may be embedded within these grouping
schemes. In fact, median efficiency levels are higher in
private airports with hub operations, which are located

close to the seashore, and serve large metropolitan areas.
On the other hand, median efficiency levels appear to
be lower in airports that operate international flights
(cf.Figure 4).

Results for the CQR of the efficiency scores on these five
contextual variables are presented for selected efficiency
percentiles in Table 5 (tau = 0.20, 0.40, 0.60, and 0.80).
The full set of results for the percentile range from
0.05 to 0.95 in intervals of 0.05 is given in the Appendix
and depicted in Figure 5. Significances and bootstrapped
lower and upper confidence intervals can also be found in
the Appendix. The standard errors and confidence limits for
the CQR coefficient estimates were obtained with asymp-
totic and bootstrapping methods. Both methods provide
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Table 5
Coefficients for the COR for selected percentiles.
tau = 0.2 tau = 0.4 tau = 0.6 tau = 0.8
(Intercept) 0.03075102 0.1719855 0.4484115 0.6925896
Private 0.79813256 0.6873951 0.3808188 0.1015598
Seashore 0.17111642 0.1406194 0.1707697 0.2058506
Large metropolitan area 0.16678104 0.1961644 0.1014932 0.1131685
Hub 0.26062603 0.4912307 0.4500952 0.4223482
International flights —0.19745866 —0.2898989 —0.4401834 —0.6646587
Private Seashore Large Metropolitan Area
EN g ] 8
° T T T T § T T T T é T T T T
02 04 06 08 02 04 06 08 02 04 06 08
Hub International
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L

T T
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Figure 5. CQR coefficients plots. The solid blue line indicates the quantile regression point estimates; the lighter blue region is a pointwise 95% confidence
band. X-axis represents the quantiles and Y-axis represents the coefficients for each contextual variable.

robust results (Koenker & Hallock, 2001), although the
bootstrap method is preferred for being more practical
(Hao & Naiman, 2007). Therefore, the bootstrap results
derived originally for the DEA scores were also used to
bootstrap for the CQR coefficient estimates. As one can
easily note from Table 5, the signs of the relationships
between the contextual variables and the efficiency levels
are confirmed for different quantiles—when compared to
results presented in Figure 4—although their magnitude
may vary from quantile to quantile. As a matter of fact, this
effect takes place because rather than predicting the mean
of the dependent variable, CQR looks at the quantiles of the
dependent variable. By choosing tau = 0.4 or 0.6, the 40th
and 60th percentiles of the data are being used to compute
the regression. Therefore, CQR can answer the question: “For
which type of Nigerian airport—high or low efficiency—does
the impact of a given contextual variable prevail?”

The CQR results presented in Table 5 indicate that
the effects of private ownership and location in a large
metropolitan area have a larger positive impact on the
lower quantiles of efficiency in Nigerian airports. For
example, the 20th quantile of efficiency for private airports
is roughly 0.798 percent points higher than for public
airports in the same quantile. The airport that is privately
owned or operated privately is OSUBI airport. This airport
is owned by Shell Petroleum Company Limited. Moreso,
Murtala Muhammed Airport Terminal II Lagos (MMA 2)
is a concessional airport, operating under concession agree-
ment. Conversely, the effects of international flights (negative)
and hub operations (positive) are larger in higher quantiles

of airport efficiency than in lower ones. Seashore location
presents a somewhat more stable pattern for different quan-
tiles, which can be inferred from Figure 5.

It is important to notice that in Figure 5 CQR coeffi-
cients for the contextual variables cross the horizontal
“effect equals zero” axis in some quantiles. Such cross-
overs are, however, sometimes quite plausible, and an
advantage of the CQR approach is that they are more easily
revealed (Koenker & Geling, 2001). In this research, cross-
over occurs for efficiency quantiles higher than 0.90 for
private airports, suggesting that airport privatization may be
innocuous for high efficiency units and that their efficiency
levels may even decrease, possibly due to congestion or
insufficient resources to keep up with higher service level
standards.

The results presented here suggest a number of policy
implications for Nigerian airports, indicating different
courses of action for airports with higher and lower effi-
ciency levels. Lower efficiency airports clearly benefit
more from private operations and are less impacted by
international flights than higher efficiency airports, which
are mostly benefited by hub operations and more penalized
by international flights. While the focus of less efficient
airports should be placed on ownership and location
aspects—at the very beginning of the airport lifecycle—
the more efficient airports should emphasize network
connectivity issues, such as hub operations in order to act
as a demand driver and also to counterbalance the negative
effects of international flights. Authorities in Nigeria should
consider the development of domestic hub operations in
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high-efficiency airports in parallel with alternative funding
sources, so that capacity strangling and service deteriora-
tion can be avoided.

Conclusions

This article presented a novel two-stage approach based
on bootstrapped DEA and CQR to assess the efficiency
of Nigerian airports in the light of different contextual
variables related to network connectivity, ownership, and
location. Results indicated that higher and lower efficiency

airports require different courses of action in order to
maintain high service standards. Although the quantile
results obtained for the less efficient airports are quite
intuitive and corroborate previous literature—positive
impact of private ownership and negative impact of
international flights—the paths for maintaining high
efficiency levels in more efficient airports are not trivial.
Future research should address a deeper focus on higher
efficiency airports in Nigeria, studying the role of capacity
shortfalls and resource congestion as critical elements for
such segments in keeping high standards of service.

Appendix: Complete Results for the Censored Quantile Regression

tau: [1] 0.05
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>Jt)
(Intercept) 0.01785 0.01747 0.01824 0.00020 90.91761 0.00000
Private 0.93934 0.93055 0.94814 0.00449 209.37551 0.00000
Seashore 0.04107 0.03194 0.05020 0.00466 8.81709 0.00000
Large metropolitan area 0.04115 0.03202 0.05028 0.00466 8.83487 0.00000
Hub 0.12212 0.12147 0.12276 0.00033 371.26850 0.00000
International flights —0.05893 —0.06807 —0.04979 0.00466 —12.63497 0.00000
tau: [1] 0.1
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>|)
(Intercept) 0.02311 0.02245 0.02378 0.00034 68.21447 0.00000
Private 0.89581 0.89346 0.89816 0.00120 747.05755 0.00000
Seashore 0.08108 0.07834 0.08381 0.00140 58.08884 0.00000
Large metropolitan area 0.08024 0.07765 0.08282 0.00132 60.77508 0.00000
Hub 0.15522 0.15469 0.15574 0.00027 579.33268 0.00000
International flights —0.10327 —0.10552 —0.10103 0.00114 —90.23727 0.00000
tau: [1] 0.15
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>Jt)
(Intercept) 0.02685 0.02609 0.02761 0.00039 69.19329 0.00000
Private 0.85166 0.84699 0.85633 0.00238 357.32600 0.00000
Seashore 0.12149 0.11677 0.12621 0.00241 50.45206 0.00000
Large metropolitan area 0.11971 0.11507 0.12436 0.00237 50.50696 0.00000
Hub 0.19548 0.19143 0.19954 0.00207 94.51384 0.00000
International flights —0.14649 —0.15110 —0.14188 0.00235 —62.30951 0.00000
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tau: [1] 0.2
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>|t)
(Intercept) 0.03075 0.03042 0.03108 0.00017 182.69791 0.00000
Private 0.79813 0.79483 0.80143 0.00168 474.32702 0.00000
Seashore 0.17112 0.16809 0.17414 0.00154 110.93159 0.00000
Large metropolitan area 0.16678 0.16344 0.17012 0.00171 97.75795 0.00000
Hub 0.26063 0.24557 0.27568 0.00768 33.92804 0.00000
International flights —0.19746 —0.20094 —0.19398 0.00177 —111.32744 0.00000
tau: [1] 0.25
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>[t)
(Intercept) 0.03724 0.03669 0.03779 0.00028 133.43641 0.00000
Private 0.75600 0.75249 0.75950 0.00179 422.72875 0.00000
Seashore 0.20676 0.20233 021119 0.00226 91.43608 0.00000
Large metropolitan area 0.20201 0.19798 0.20604 0.00206 98.25668 0.00000
Hub 0.40823 0.37981 0.43665 0.01450 28.15126 0.00000
International flights —0.23911 —0.24241 —0.23581 0.00169 —141.90311 0.00000
tau: [1] 0.3
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>e)
(Intercept) 0.04480 0.04345 0.04615 0.00069 65.05123 0.00000
Private 0.75116 0.74175 0.76056 0.00480 156.57666 0.00000
Seashore 0.20404 0.19295 0.21513 0.00566 36.04863 0.00000
Large metropolitan area 0.24500 0.23853 0.25148 0.00330 7417171 0.00000
Hub 0.46549 0.44727 0.48371 0.00930 50.07417 0.00000
International flights —0.24220 —0.25105 —0.23334 0.00452 —53.61283 0.00000
tau: [1] 0.35
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>|t))
(Intercept) 0.06313 0.05824 0.06802 0.00249 25.30687 0.00000
Private 0.73366 0.72640 0.74092 0.00370 198.07967 0.00000
Seashore 0.20321 0.19298 0.21344 0.00522 38.91717 0.00000
Large metropolitan area 0.25990 0.25191 0.26789 0.00408 63.74653 0.00000
Hub 0.47376 0.45881 0.48871 0.00763 62.10638 0.00000

International flights —0.25807 —0.26568 —0.25046 0.00388 —66.44509 0.00000
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tau: [1] 0.4
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>Jt)
(Intercept) 0.17199 0.16086 0.18311 0.00567 30.30713 0.00000
Private 0.68740 0.68060 0.69419 0.00347 198.17250 0.00000
Seashore 0.14062 0.12455 0.15668 0.00820 17.15597 0.00000
Large metropolitan area 0.19616 0.18125 0.21108 0.00761 25.77759 0.00000
Hub 0.49123 0.47306 0.50940 0.00927 52.99058 0.00000
International flights —0.28990 —0.29444 —0.28535 0.00232 —124.99059 0.00000
tau: [1] 0.45
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>|t)
(Intercept) 0.25972 0.24858 0.27087 0.00569 45.68252 0.00000
Private 0.60006 0.56758 0.63254 0.01657 36.20659 0.00000
Seashore 0.14022 0.11236 0.16808 0.01421 9.86485 0.00000
Large metropolitan area 0.13446 0.12153 0.14739 0.00660 20.38322 0.00000
Hub 0.46560 0.43921 0.49199 0.01346 34.57956 0.00000
International flights —0.30369 —0.31133 —0.29606 0.00390 —77.96064 0.00000
tau: [1] 0.5
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>Jt)
(Intercept) 0.33651 0.33092 0.34211 0.00286 117.86028 0.00000
Private 0.52848 0.50960 0.54736 0.00963 54.85475 0.00000
Seashore 0.13500 0.11342 0.15658 0.01101 12.26117 0.00000
Large metropolitan area 0.10042 0.09917 0.10167 0.00064 157.45906 0.00000
Hub 0.42806 0.40874 0.44739 0.00986 43.41841 0.00000
International flights —0.33647 —0.34205 —0.33088 0.00285 —117.98263 0.00000
tau: [1] 0.55
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>Jt)
(Intercept) 0.38916 0.38092 0.39741 0.00420 92.55340 0.00000
Private 0.46685 0.45243 0.48128 0.00736 63.43781 0.00000
Seashore 0.14398 0.13477 0.15320 0.00470 30.62457 0.00000
Large metropolitan area 0.10271 0.09992 0.10550 0.00142 72.24833 0.00000
Hub 0.40685 0.37351 0.44019 0.01701 23.91972 0.00000
International flights —0.38464 —0.39133 —0.37796 0.00341 —112.77803 0.00000
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tau: [1] 0.6
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>e)
(Intercept) 0.44841 0.44065 0.45617 0.00396 113.20799 0.00000
Private 0.38082 0.36638 0.39526 0.00737 51.67624 0.00000
Seashore 0.17077 0.16096 0.18058 0.00500 34.13410 0.00000
Large metropolitan area 0.10149 0.09887 0.10412 0.00134 75.85169 0.00000
Hub 0.45010 0.44204 0.45815 0.00411 109.49506 0.00000
International flights 0.44018 —0.44791 —0.43245 0.00394 —111.61841 0.00000
tau: [1] 0.65
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>[t)
(Intercept) 0.49583 0.48718 0.50448 0.00441 112.34631 0.00000
Private 0.29172 0.28185 0.30160 0.00504 57.87830 0.00000
Seashore 0.21245 0.20133 0.22357 0.00568 37.43268 0.00000
Large metropolitan area 0.10226 0.10005 0.10446 0.00112 90.90406 0.00000
Hub 0.40191 0.39508 0.40875 0.00349 115.30411 0.00000
International flights —0.48318 —0.49200 —0.47436 0.00450 —107.35976 0.00000
tau: [1] 0.7
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>t)
(Intercept) 0.54263 0.53465 0.55060 0.00407 133.28972 0.00000
Private 0.20130 0.19250 0.21011 0.00449 44.80546 0.00000
Seashore 0.25607 0.24201 0.27014 0.00717 35.68992 0.00000
Large metropolitan area 0.10836 0.10549 0.11123 0.00146 73.99687 0.00000
Hub 0.34901 0.34230 0.35573 0.00343 101.89296 0.00000
International flights —0.52751 —0.53528 —0.51974 0.00396 —133.10153 0.00000
tau: [1] 0.75
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>|t))
(Intercept) 0.59449 0.58709 0.60189 0.00377 157.49089 0.00000
Private 0.11519 0.11256 0.11781 0.00134 85.85837 0.00000
Seashore 0.29033 0.28266 0.29799 0.00391 74.19556 0.00000
Large metropolitan area 0.11519 0.11256 0.11781 0.00134 85.85837 0.00000
Hub 0.29033 0.28266 0.29799 0.00391 74.19556 0.00000

International flights —0.57426 —0.58162 —0.56689 0.00376 —152.85036 0.00000
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tau: [1] 0.8
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>|)
(Intercept) 0.69259 0.67511 0.71007 0.00892 77.66045 0.00000
Private 0.10156 0.08436 0.11876 0.00877 11.57560 0.00000
Seashore 0.20585 0.18366 0.22804 0.01132 18.17925 0.00000
Large metropolitan area 0.11317 0.10920 0.11713 0.00202 55.94815 0.00000
Hub 0.42235 0.39017 0.45452 0.01642 25.72814 0.00000
International flights —0.66466 —0.68217 —0.64715 0.00894 —74.38315 0.00000
tau: [1] 0.85
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>Jt)
(Intercept) 0.86697 0.85666 0.87728 0.00526 164.79399 0.00000
Private 0.00000 0.00000 0.00000 0.00000 NaN NaN
Seashore 0.13303 0.12272 0.14334 0.00526 25.28602 0.00000
Large metropolitan area 0.12958 0.12598 0.13317 0.00183 70.70863 0.00000
Hub 0.62717 0.60312 0.65122 0.01227 51.11062 0.00000
International flights —0.83549 —0.84534 —0.82565 0.00502 —166.30952 0.00000
tau: [1] 0.9
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>Jt)
(Intercept) 1.00000 1.00000 1.00000 0.00000 Inf 0.00000
Private —0.06730 —0.07916 —0.05545 0.00605 —11.12698 0.00000
Seashore 0.06730 0.05545 0.07916 0.00605 11.12698 0.00000
Large metropolitan area 0.00000 0.00000 0.00000 0.00000 NaN NaN
Hub 0.72974 0.71913 0.74036 0.00542 134.73316 0.00000
International flights —0.79705 —0.80270 —0.79140 0.00288 —276.42408 0.00000
tau: [1] 0.95
Coefficients:
Value Lower bound Upper bound Std error T value Pr(>|t)
(Intercept) 1.00000 1.00000 1.00000 0.00000 Inf 0.00000
Private —0.04860 —0.10277 0.00557 0.02764 —1.75858 0.07865
Seashore 0.04860 —0.00557 0.10277 0.02764 1.75858 0.07865
Large metropolitan area 0.00000 0.00000 0.00000 0.00000 NaN NaN
Hub 0.65302 0.58195 0.72410 0.03626 18.00784 0.00000
International flights —0.70162 —0.72404 —0.67921 0.01144 —61.35086 0.00000
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