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ABSTRACT
This paper proposes a slow-movingmanagementmethod for a systemusing of intermit-
tent demandper unit time and lead time demandof items in service enterprise inventory
models. Our method uses zero-inflated truncated normal statistical distribution,
which makes it possible to model intermittent demand per unit time using mixed
statistical distribution. We conducted numerical experiments based on an algorithm
used to forecast intermittent demand over fixed lead time to show that our proposed
distributions improved the performance of the continuous review inventorymodel with
shortages.We evaluatedmulti-criteria elements (total cost, fill-rate, shortage of quantity
per cycle, and the adequacy of the statistical distribution of the lead time demand) for
decision analysis using the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS). We confirmed that our method improved the performance of the
inventory model in comparison to other commonly used approaches such as simple
exponential smoothing and Croston’s method. We found an interesting association
between the intermittency of demand per unit of time, the square root of this same
parameter and reorder point decisions, that could be explained using classical multiple
linear regression model. We confirmed that the parameter of variability of the zero-
inflated truncated normal statistical distribution used to model intermittent demand
was positively related to the decision of reorder points. Our study examined a decision
analysis using illustrative example. Our suggested approach is original, valuable, and,
in the case of slow-moving item management for service companies, allows for the
verification of decision-making using multiple criteria.

Subjects Algorithms and Analysis of Algorithms, Data Science, Optimization Theory and
Computation, Scientific Computing and Simulation, Operating Systems
Keywords Demand during lead time, Inventory models, Zero-inflated truncated normal
statistical distribution

INTRODUCTION AND LITERATURE REVIEW
Intermittent demand occurs when the demand per unit of time (DPUT) for products,
parts, or pieces in some periods is zero (Syntetos et al., 2016). This type of DPUT is
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often considered as a random variable due to its stochastic nature (Cattani, Jacobs &
Schoenfelder, 2011). Intermittent DPUT a common occurrence for service and commercial
companies that supply parts to industry sectors such as aerospace (Ayu Nariswari, Bamford
& Dehe, 2019), automotive (Zhang & Xiaofeng, 2017), information technology (Antosz &
Ratnayake, 2019), andmilitary (Babai, Syntetos & Teunter, 2014). This particular frequency
in demand could impact different company strategies (Pavlas et al., 2017; Devika et al.,
2016), such as the use of inventory models (Jonkman, Barbosa-Póvoa & Bloemhof, 2019).
Inventory models reduce costs and establish optimal stock levels in order to meet the
demand for components and final products for customers (Rojas et al., 2019). However, in
models predicting zero demand, its parameters are not calculated the same because demand
is characterized by intermittency, and the particularities of the intermittent demand need
to be considered to develop more accurate inventory models (Gregersen & Hansen, 2018).
Inventory models that consider this type of demand are called slow-moving items (Hahn
& Leucht, 2015). Intermittent DPUT is also characterized by high variability across the
non-zero values that compose the demand, requiring precise forecast models to be used in
inventory models(Kim & Kim, 2016).

Traditional inventory models are based on a fixed demand (Teixeira, Lopes & Figueiredo,
2018). However, updated models should factor in the uncertainty of demand (Aloulou,
Dolgui & Kovalyov, 2014). The uncertainty of DPUT and lead time demand (LTD) is
a crucial aspect in supply chain management (Khosravi et al., 2018). One of the most
commonly used models in service company supply is theQ,r model, which is a continuous
review inventory model system (Ponte et al., 2018; Wen et al., 2020). This model reorders
a fixed quantity (Q) in a single period and makes a purchase or production order under
an on-hand inventory level named the reorder point (r). We only need the average
DPUT forecast to determine Q, but knowing the complete LTD distribution is required
to determine r . In order to facilitate calculations, a normal distribution for both DPUT
and LTD is usually assumed (Johnson, Kotz & Balakrishnan, 1994). Nevertheless, other
distributions used to model DPUT, lead time (LT), and LTD can provide more accurate
inventory modeling. Table 1 in Cobb, Rumí & Salmerón (2013) provides a summary of the
distributions used in stochastic inventory models.

Although the normal distributed Q,r model is competent at inventory management,
applying it in models of intermittent demand could produce biased results. Normal
distribution does not work in intermittent demand modeling because it is difficult to
predict empirical variation produced between non-zero and zero DPUTs. To address this
problem and to treat this kind of data, several forecasting methods have been developed
such as the: simple statistical smoothing methods, Croston’s variant of exponential
smoothing (Croston, 1972; Kourentzes, 2014), and bootstrap methods (Willemain, Smart &
Schwarz, 2004; Ewbank et al., 2020). Among these, the bootstrap methods have shown the
best precision in updating the LTD and distributing the underlying probability of non-zero
values. However, all of these methods have problems in providing precise estimates, given
that the overdispersion of data coming from an intermittent DPUT negatively affects
parameters estimation and truncated probability distributions. (Zeileis, Kleiber & Jackman,
2008) and (Yang, 2012) improved parameter estimation using the maximum likelihood
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method that combines variable counts, zero mass points called hurdle models, truncated
counts on the left, and censored counts on the right called zero-adjusted models. These
distributions may be especially suitable for intermittent demand because of their ability
to explicitly model non-zero and zero demand cases. Statistical mixture distribution
models can describe, estimate and simulate these types of data (Bethea, 2018). Here we
highlight the Q,r model and its use in slow-moving items. Using zero-inflated statistical
distributionmodeling intermittent demand, appears promising, but its inventorymodeling
performance has not been adequately evaluated or compared to other methods (Ünlü,
2011).

Our objective was to propose slow-moving item management model that uses the
statistical distribution of mixture, zero-inflated truncated normal (ZITNO), where the
Normal distribution component’s domain is defined only in Real positive, to model
intermittent DPUT forecasting with non-zero values and the LTD by means of a zero-
inflated truncated normal sum (ZITNOsum). We examined their performance using a
continuous review with a shortage inventory model that included total costs of inventory,
fill-rate, the quantity of inventory shortage per cycle, and the statistical distribution
of LTD. In ’Background’, we describe the background of our proposal. We explain
how to generate and implement several intermittent DPUT forecast models, including
one predicting LTD when LT is constant. We use the following statistical distributions:
ZITNO / ZITNO sum, Simple exponential smoothing / Simple exponential smoothing
sum, and Croston’s / Croston’s sum, a Simple exponential smoothing method variant.
‘Numerical Experiments and Illustrative Example’ is divided into three parts. ‘Evaluating
inventory model performance measures using TOPSIS’ shows the numerical experiments
we conducted to show the benefits of our proposed model. We compared different
inventory models with multi-criteria decisions using the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) when the statistical distributions modeled the
DPUT and LTD. In ‘Effect of variability and intermittent DPUT with ZITNO statistical
distribution on total costs andQ and r decisions’, we determine the parameter of variability
and how the proportion of zeros contained in the ZITNO statistical distribution affected
total costs, Q and r . In ‘Analyzing real data using an illustrative example’, we show a
decision analysis using an illustrative example. Finally, in ‘Discussion’, we discuss our
findings, the limitations of the study, and our conclusions.

BACKGROUND
Forecasting intermittent DPUT and LTD
In this section, we show how to forecast an item’s complete LTD distribution. Let Y be an
random variable of the DPUT. This DPUT is intermittent, meaning that , sometimes it is
zero and sometimes it is not. This creates great variability in the data. Let S be the LTD,
which corresponds to a random sum that is expressed as:

S=
T+K∑
t=T+1

Yt , (1)
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where K is the fixed LT used for forecasting LTD, with mean E(K )=µK and variance
Var(K )= σ 2

K = 0. We consider K fixed when calculating LTD random variables using
the formula {YT+1+···+YT+K ,k ∈N}. We calculate the LTD mean using the formulas
E({YT+1+···+YT+K })=µS and variance Var({YT+1+···+YT+K })= σ 2

S .

(Willemain, Smart & Schwarz, 2004) found that intermittent DPUT is often executed
in strokes with longer sequences of zeros and other non-zero values. For this reason, it
is possible to use a pattern of autocorrelation and a Markov process of two first-order
states can be used to forecast this random variable with temporal sequence. Starting with
a prediction of the sequence of zero and non-zero values during the K LT periods, these
forecasts are conditioned to determine whether the last demand, YT , is zero or non-zero.
Using the counts of a historical or simulated demand time series, it possible to estimate
the probabilities of state transitions (Mosteller & Tukey, 1977). Scientific computing and
simulation overlay play fundamental roles in generating knowledge and studying decision-
making (Salvatier, Wiecki & Fonnesbeck, 2016). It is therefore necessary to assign numeric
values to non-zero predictions that cannot be based on unrealistic bootstraps, particularly
those with poorly estimated LTD distribution tails made with values from the same
historical data set. This problem is solved with jittering, defined as adding some random
variations assumed with normal distribution in order to allow the use of values closer to
the historical data. We adapted this method to generate a LTD jitter that is able to occupy
an intermittent DPUT in a simulation approach for slow-moving items. A summary of
this approach can be found in Algorithm 1. The execution of Algorithm 1 requires R
software, a free software for statistics and graphs that is used across the international
scientific community, and can be consulted in the codes attached to this work with the
name of ‘‘Jitter.R’’. (Rojas, 2016) used this software in supply models and programmed an
R code in a generalized linear model (GLM) environment. This allowed them to generate
a sequence of random values following the statistical distribution ZITNO, as well as to
estimate the parameters of this statistical distribution, among other functionalities. The
rmarkovchain command of R package markovchain generates a random sequence of
zero/non-zero markers of a known length for an random variable using an estimated
transition probability matrix (Spedicato, 2015).

Modeling DPUT and LTD with a constant LT
In this subsection we show three statistical distributions that can be occupied when
modeling of random variable DPUT, and three modeling distributions of the LTD, which
is the sum of this random variable in a constant LT. These three pairs of statistical
distributions are: Simple exponential smoothing /Simple exponential smoothing sum,
Croston’s / Croston’s sum and ZITNO / ZITNOsum. For all cases, the following models
assume that DPUT forecast are generated from a time T + 1,...,T +m. For the LTD,
it is assumed that LT is constant (µK ). DPUT and LTD forecasts are generated from
Algorithm 1.

Simple exponential smoothing / Simple exponential smoothing sum
This approach assume that LTD follows a normal statistical distribution and a fixed LT.
The LTD mean and variance are calculated as follows:
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Algorithm 1 Generating intermittent DPUT and LTD forecasts for use in a slow-moving
item inventory management model
1: Generate a random sample of intermittent DPUTs of ZITNO statistical distribution
of length n and fixed and known parameters.
2: Estimate the transition probability matrix of the zero and non-zero DPUTs of n
generated in Step 1.
3: Conditional on the last observed demand, generate a random sequence of zero/non-
zero DPUT markers of known length using the transition probability matrix estimated in
Step 2.
4: Replace every non-zero state marker with a numerical value sampled at random,
with replacement, from the original set of observed non-zero DPUTs generated in Step 1.
5: Estimate the parameters of normal distribution adjusted to the non-zero values of
the random sample with replacement achieved in Step 4.
6: Generate a ‘‘jitter’’ of the non-zero DPUT values, replacing the non-zero markers
generated in Step 3 with random numbers generated from the normal statistical distribu-
tion with estimated parameters in Step 5.
7: From the sample ‘‘jitter’’ obtained in Step 6, sum the values over the horizon of a
constant LT to get LTD forecast values.

(i) Considering the mean level of DPUT as µSES, and estimate using

µSES=
1

T+m

T+m∑
t=T+1

(γ yt + (1−γ )µt−1SES),

where γ is a smoothing constant between 0 and 1, selected to minimize
∑T+m

t=T+1(yt −
µSES)2,t =T+1,...,T+m. To initialize the smoothing, we can use the average of the first
two demands µo=

y1+y2
2 .

(ii) The DPUT variance with this approach can be calculated from:

Var(Y )= σ 2
SES=

1
T+m

T+m∑
t=T+1

(yt −µSES)2,∀y.

The mean of K demands over the LT (µSSES) is given by

µSSES =µKµSES,

and the variance of K demands over the lead time (σ 2
SES) is calculated using one-step ahead

forecast difference between the actual DPUT data and the mean lag, using the expression
σ 2
SES =

1
m
∑T+m

t=T+1(yt −µt−1SES)
2. The variance of the LTD distribution (σ 2

SSES) can be
estimated as:

σ 2
SSES = σ

2
SESµK .

Croston’s / Croston’s sum variant of Simple exponential smoothing method
Croston’s approach considers theDPUTmean using exponential smoothing that is separate
from:
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(i) themean intervals of data conformed between non-null demands (here, the smoothed
estimate is denoted by It ) and (ii) the mean sizes of these intervals (here, the smoothed
estimate is denoted by St ).

In addition, q is the time interval since the last non-zero demand. Croston’s approach
can be described as follows:

if Y = 0, then

St = St−1
It = It−1
q = q+1, (2)

else

St = γYt + (1−γ )St−1
It = γ q+ (1−γ )It−1
q = 1. (3)

The combination of the size and interval estimates from Eqs. (2) and (3), the DPUT
mean can be expressed as:

µCROST =
1

T+m

T+m∑
t=T+1

(
St
It
)

These estimates update whenever a demand non null realization occurs. When a demand
occurs during the same review interval, Croston’s approach is identical to conventional
exponential smoothing, where St =µtCROST .

To initialize Croston’s approach, we use the time until the first event and the size of the
first event.

The DPUT variance when using this method can be expressed as:

Var(Y )= σ 2
CROST =

1
T+m

T+m∑
t=T+1

(yt −µCROST )2.

Croston’smethod also considers LTDwith a constant LT andnormal statistical distribution.
The mean is expressed as:

µSCROST =µKµCROST ,

and the variance is calculated as:

σ 2
SCROST = σ

2
CROSTµK .
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Zero inflated truncated normal / zero inflated truncated normal sum
In this model, we assumed that DPUT has a ZITNO distribution and LTD has a ZITNOsum
distribution with a constant LT. We estimated the mean level of DPUT (µZITNO) and its
variance (σ 2

ZITNO) using:

E(Y )=µZITNO= (1−ν)
∫
Ry>0

yφ
(y−µNO

σNO

) 1
σNO

dy;with y > 0,

and

Var(Y )= σ 2
ZITNO=

1
T+m

T+m∑
t=T+1

(yt −µZITNO)2,

respectively, where µNO and σNO are mean parameters and the standard deviation (SD) of
a normal distribution of subset y > 0. Note that Y forecasting length measures from T+1
to T+m. On the other hand, the expected LTD value (µSZITNOsum) and its variance (σ 2

SZITNO)
under ZITNOsum distribution is calculated by:

µSZITNOsum =µKµZITNO,

and

σ 2
SZITNOsum = σ

2
ZITNOµK ,

respectively.

Intermittent DPUT and LTD in the Q,r model with shortage
In Q,r model with shortage, the expected annual total cost is the a sum of:

(i) the product of the expected product stock quantity (in units) and holding cost per
product unit per year (HC);

(ii) the product of the expected number of orders per year and the ordering cost(OC),
and finally

(iii) the product of the unit punishment cost (SC) per units of the item in short supply,
the expected number of orders per year, and the expected number of units of shortage
product per year, which is a function of the reorder point (S(r)).

We assumed that the organization maintains intermittent demand every day of the year
(365).

The expected total cost per year (TC) in the (Q, r) model can be expressed as:

TC=G(Q, r)=
(
Q
2
+ r−µS

)
HC+

365µ
Q

OC+S(r)
365µ
Q

SC, (4)

where µand µS values (note that the sequence of values of Y forecast values from T+1 to
T+m, and that the DPUT sum needed to forecast the LTD is calculated using LT = K ), can
be calculated according to the probabilistic modeling showed in Tables 1 and 2. For diverse
DPUT and LTD statistical distributions, see the probability density functions (PDFs),
cumulative distribution functions (CDFs) and parameters in Tables 1 and 2(Hadley &
Whitin, 1963; Johnson & Montgomery, 1974; Silver, Pyke & Peterson, 1998).
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Table 1 Modeling DPUT.

Distribution PDF CDF Parameters

ZITNO (1−ν)φ( y−µNO
σNO

) 1
σNO

1(y>0) ν+ (1−ν)8( y−µNO
σNO

) µNO ∈R,σNO> 0

+ν1(y=0) ,0<ν < 1
Simple exponential
smoothing

φ( y−µSES
σSES

) 1
σSES

8( y−µSES
σSES

) µSES ∈R,σSES> 0

Croston’s φ( y−µCROST
σCROST

) 1
σCROST

8( y−µCROST
σCROST

) µCROST ∈R,σCROST > 0

Table 2 Modeling LTD.

Distribution PDF CDF Parameters

ZITNOsum (1−νs)φ( s−µNOµkσNO(µk )
) 1
σNO(µk )

1(s>0) νs+ (1−νs)8( s−µNOµkσNO(µk )
) µNOµk ∈R,σNO(µk)> 0

+νs1(s=0) ,µk = 2,0<νs< 1
Simple exponential
smoothing sum

φ( s−µSESµk
σSESµk

) 1
σSESµk

8( s−µSESµk
σSESµk

) µSESµk ∈R,σSESµk > 0

Croston’s sum φ( s−µCROSTµk
σCROSTµk

) 1
σCROSTµk

8( s−µCROSTµk
σCROSTµk

) µCROSTµk ∈R,σCROSTµk > 0

In this formula, 365µ corresponds to the expected annual demand, to express the annual
costs referred to in Eq. (4). However, µS does not require this transformation. Q and r
correspond to lot size decision variable to order and reorder points, respectively. S(r) is
the expected shortage per cycle calculated as:

S(r)=
∫ smax

r
(s− r)fS(s)ds, (5)

where smax is the maximum LTD value and the LTD PDF is denoted by fS(·). This
expression can also be calculated using different assumptions LTD PDF assumptions
shown in Table 2. For any statistical distribution of DPUT and LTD, we can solver Eq. (4)

using an iterative method, considering an initial solution of Q=
√

2Coµ
Ch

(Nahmias, 2001).
Here, the probability of obtaining a stockout when given the complement of the CDF
(Fs(r)) can be expressed as:

1−Fs(r)=
QHC
µSC

.

To calculate the argument of this function (r), we applied this inverse function:

r = F−1s (1−
QHC
µSC

). (6)

To estimate the expected vale of S(r) function in Eq. (5) and to find the optimum lot size,
we used:

Q=

√
2µ(OC+S(r))

HC
. (7)

We repeated Eqs. (6) and (7) until we reached a value of variation smaller than a previously
established minimum threshold. We were then able to calculate lower Q∗,r∗ values than
Eq. (4).
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Measuring inventory model performance
In this Section, we will define some previously proposed general performance measures
to evaluate a continuous review inventory model. These measures are applicable for the
DPUT and LTD modeling shown in Tables 1 and 2. We will define four measures of
performance: total costs, expected shortage per cycle, fill-rate, and the Kullback–Leibler
divergence. Finally, we present a multi-criteria decision analysis method using TOPSIS
that occupies the previously indicated performance measures as criteria to evaluate DPUT
and LTD modeling alternatives.

Total cost of continuous review with the shortage inventory model
By carrying out the iterations shown in a previous subsection, we calculated the decision
variables that minimize the total cost of continuous review with shortage inventory model
TC=G(Q∗, r∗), applied to Eq. (4) for each model in Tables 1 and 2. An inventory model
is more effective when it results in a lower annual cost.

Expected shortage per cycle
We used a previously explained performance measurement to obtain the value of the
expected amount of shortage per cycle (S(r∗)) given in Eq. (5), for each of the tested
models in Tables 1 and 2. An inventory model is more effective when it results in a lower
expected shortage per cycle.

Fill-rate
(Sobel, 2004) defined the fill-rate of a supply system as: ‘‘the fraction of demand that is met
from on-hand inventory, understanding that the satisfaction of the demand is restricted
to the amount purchased and available’’. We calculated the Fill-rate for each statistical
distribution shown in Tables 1 and 2 using Eq. (8):

Fill− rate=

∫ Q∗
o yf (y)dy∫ my
0 yf (y)dy

, (8)

where f (y) are the PDFs that are shown in Table 1, and my is the maximal DPUT for
each of the evaluated distributions. An inventory model is more effective when its Fill-rate
indicator value is closer to 1.

Kullback–Leibler divergence
To determine the quality of the proposed PDF and LTD approximation in Table 2, we used
the Kullback–Leibler divergence (Cobb, 2004):

Kullback– Leibler=
∫
∞

−∞

log
(
f (x)
f̃ (x)

)
f (x)dx, (9)

where f (·) is the unknown true PDF and f̃ (·) its approximation. To calculate the Kullback–
Leibler divergence show in (9), we used the kernel estimate to establish the true PDF
(Langseth et al., 2014). Using Eq. (1), we computed the sequence {s1,...,sn} of n LTD
realizations (or data). According to the data, we defined the kernel estimate of the unknown
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PDF of LTD fS(·) using:

f̂S(s)=
1
nh

n∑
i=1

K
(
si− s
h

)
, s≥ 0, (10)

where K (·) is a kernel function satisfying
∫
∞

0 K (x)ds= 1, h a smoothing parameter
and s the point at which the PDF is estimated. Once Eq. (10) has been calculated, the
Kullback–Leibler divergence for each LTD distribution established in Table 2 with support
[a,b] can be expressed as:

Kullback– Leibler′=
∫ b

a
log
(
f̂S(s)
f̃S(s)

)
f̂S(s)ds, (11)

where f̂S(s) is the kernel estimate and f̃ (s) are the approximations proposed in Table 2.
We selected one of the approximations with a smaller Kullback–Leibler value than the one
calculated using Eq. (11).

TOPSIS
This multi-criteria decision analysis analyzes the geometric distances between a chosen
solution, the ideal solution, and the least suitable solution (Yoon & Hwang, 1995; Aye,
Gupta & Wanke, 2018; De Andrade, Antunes & Wanke, 2020).

NUMERICAL EXPERIMENTS AND ILLUSTRATIVE EXAMPLE
We used Algorithm 1 to generate intermittent DPUT and intermittent LTD.We performed
5000 repetitions or scenarios of DPUT samples using a ZITNO statistical distribution length
n= 30, with the parameters µNO= 12 and σNO= 1, a random proportion of zeros in the
sample (ν), and an uniform generation in the interval [0,1]. This framework is applicable
to each of the 5000 scenarios of the Montecarlo (MC) study, where we assumed an
expected LTD value = 2 periods. For each scenario, we generated 200 DPUT data ‘‘jitter’’
simulated from the transition matrix of the Markov chain. Therefore, each LTD scenario
had a length of 100 periods. For each scenario, we also generated uniform order costs
(OC∼U [17;140]), holding costs (HC∼U [0;0.68]) and shortage costs (SC∼U [5;50]).
These coefficients were chosen based on see Table 2 and Appendix C in (Wanke, 2014).

To model the intermittent DPUT we used the statistical distributions in Table 1, and to
model LTD we used the statistical distributions shown in Table 2. Next, we estimated the
parameters of normalDPUTandLTDprobability distributionusing the fitDist command
of the gamlss package, and the ets and crost commands of the tsintermittent for
Simple exponential smoothing and Croston’s method in R software. We occupied both of
these parameters as the OC,HC and SC coefficients to obtain Q∗,r∗, and Tc values in Eq.
(4) for each scenario. Interested readers can consult the codes attached to this work under
the names ‘‘ZITNO.R’’ and ‘‘TOPSISSimulation.R’’.

Evaluating inventory model performance measures using TOPSIS
In this subsection, we used the TOPSISmethod to evaluate the performance of a continuous
review inventory models with shortage. The DPUT/LTD modeling pairs were Simple
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exponential smoothing / Simple exponential smoothing sum, Croston’s /Croston’s sum
and ZITNO/ZITNOsum.

Figure 1 compare boxplots (A) to (O) of performance measures of TC, S(r) and
Kullback–Leibler divergence, segmented in data groups formed according to the level of
intermittency of the DPUT (0<ν < 0.2 , 0.2<ν < 0.4, 0.4<ν < 0.6, 0.6<ν < 0.8 and
0.8<ν < 1 ), between the proposal statistical distributions for results of 5000 scenarios of
indicated inventory model. In this figure we have labeled Simple Exponential Smoothing
as SES. Note that for all level of intermittency of the DPUT, except to 0< ν < 0.2 the
indicated performance measures of inventory model are lower using the ZITNO statistical
distribution. We confirm this statement using the respective Kruskall-Wallis tests (results
not shown). In the case of the fill-rate comparison there were no differences, and its median
was always 1 in all the cases of intermittent levels of the DPUT and for all the statistical
distributions studied (results not shown).
Table 3 shows the ranked % of TOPSIS order for each probability distribution model,

segmented by intermittency level of the DPUT. Note that in all cases, the statistical
distribution ZITNO get better performance in the inventory model of continuous review
with shortage, occupying a multi-criteria evaluation of decisions using TOPSIS.

Effect of variability and intermittent DPUT with ZITNO statistical dis-
tribution on total costs and Q and r decisions
This subsection discusses more in-depth how the parameter of variability (σNO) and the
proportion of zeros (ν) used to define the ZITNO statistical distribution affect the total costs
and Q and r decisions. With this objective, we repeated the simulation scheme proposed
in ‘Numerical Experiments and Illustrative Example’, but considered a more significant
DPUT variability, setting the parameter at σNO = 3, and maintaining the parameter at
µNO= 12.

Figure 2 shows scatterplots between the proportion of zeros in the DPUT (ν, labeled
in x-axe as propDPUT) and TC, and Q and r decisions, in scenarios where σNO= 1 and
σNO= 3.
We explored these relationships using classical multiple linear regression analysis,

where to avoid the problem of multicollinearity we used standardized values of the
independent variables ν and

√
ν (Aiken, West & Reno, 1991). Table 4 shows only

the relationship between r ∼ ν +
√
ν (σNO = 1). In this model the adjusted R-

squared is 0.90. Note that the regressor of ν is negative and significant, while the
regressor of

√
ν is positive and significant. These relationships can be explained

by the expression of r = µKµZITNO+ z
√
σ 2
SZITNOsum = µKµZITNO+ z

√
σ 2
ZITNOµK =

µKµZITNO+z
√

1
T+m

∑T+m
t=T+1(yt −µZITNO)2µK , where z is a security quantile of a standard

normal distribution, and µZITNO= (1−ν)
∫
Ry>0

yφ
( y−µNO

σNO

) 1
σNO

dy;with y > 0. Then, when
ν decreases (there are more non-zero demands), r increases to have enough stock to deal
with this situation, while when

√
ν increases, the variance of the DPUT also increases,

therefore it requires a larger safety stock and r to have enough stock for this case.
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Figure 1 Comparative boxplots (A) to (O) between proposal statistical distributions of TC, S(r) and
Kullback–Leibler divergence segmented by ν.

Full-size DOI: 10.7717/peerjcs.298/fig-1

Finally, we compared the differences between the optimal TCs, and the Q and r
decisions where σNO= 1 and σNO= 3. Table 5 depicts descriptive measures such as mean,
sd , interquartile range, and 0, 25, 50, 75 and 100-th quantiles of r under both scenarios. We
found significant differences for the Wilcoxon signed-rank test with continuity correction
regarding r decisions.

Analyzing real data using an illustrative example
In order to show proposed method using real data, we selected a product experiencing
intermittent demand from the inventory of a Chilean public pharmacy. First, we carried
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Table 3 Rank TOPSIS order (%) for statistical distributions compared.

Distributions ν Rank TOPSIS order (%)
1 2 3

ZITNO/ 0.8<ν < 1 97 2,74 0,26
ZITNOSUM 0.6<ν < 0.8 99 0,85 0,15

0.4<ν < 0.6 94 5,03 0,97
0.2<ν < 0.4 98 1,96 0,04
0<ν < 0.2 98 1,9 0,1

Simple exponential smoothing / 0.8<ν < 1 0,06 93,37 6,57
Simple exponential smoothing sum 0.6<ν < 0.8 0,07 90,19 9,74

0.4<ν < 0.6 0,02 91,56 8,42
0.2<ν < 0.4 0,04 94,62 5,34
0<ν < 0.2 0,07 90,06 9,87

Croston’s / Croston’s sum 0.8<ν < 1 2,94 3,89 93,17
Croston’s sum 0.6<ν < 0.8 0,93 8,96 90,11

0.4<ν < 0.6 5,98 3,41 90,61
0.2<ν < 0.4 1,96 3,42 94,62
0<ν < 0.2 1,93 8,04 90,03

out a statistical DPUT study using an adapted ZITNO statistical distribution. Second, we
evaluated the performance of a Q,r supply model with a DPUT shortage and ZITNO
statistical distribution.

Case presentation. Public pharmacies in Chile do not base their supply practices on
drug availability (Rojas et al., 2019). Instead, they manage and maintain a mix of inventory.
As shown in (Rojas et al., 2019), models that factor in uncertain demands and shortages
are useful for pharmacies. Currently, Chilean pharmacies manage their orders based on
an annual needs planning with divided monthly orders and can be corrected up or down
20%, depending on the amount of inventory on hand. This method tries to comply with
pharmaceutical safety recommendations, but suffers from supply decisions based on
scientific criteria. This consequently increases total costs related to inventory management.
Therefore, it is necessary to design a supply policy that minimizes involved costs, considers
drug demands, and ensures that patients receive their treatments on time.

In this illustration, we carried out a statistical study of the DPUT for one product used in
asthma treatments (called salbutamol) in an anonymous Chilean public hospital pharmacy.
We proposed an optimized inventory system with reduced costs.

Statistical study of the data set. We studied a data set of the daily demand of salbutamol
inhalators. The data set spanned 180 days. In order to study the temporal dependence of
this data set, we looked at its autocorrelation function (ACF) and partial ACF (PACF) of
DPUT, considering and not considering the null values (zeros). Figure 3 shows plots of the
ACFs and PACFs. We detected a small partial autocorrelation when the null data (zeros)
were included, which may be due to the fact that the article obeys a medical prescription
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Figure 2 Scatterplots: (A) TC∼ ν(σNO = 1), (B) Q∼ ν(σNO = 1), (C) r ∼ ν(σNO = 1), (D) TC∼ ν(σNO =
3), (E) Q∼ ν(σNO= 3), and (F) r ∼ ν(σNO= 3).

Full-size DOI: 10.7717/peerjcs.298/fig-2

Table 4 Relationship between r ∼ ν+ν (σNO=1).

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21.9553 0.2838 77.36 0.0000
ν −93.7066 0.8109 −115.56 0.0000
√
ν 80.2420 1.0007 80.19 0.0000

Table 5 Descriptive measures of r decisions (scenarios where σNO= 1 and σNO= 3).

r decisions mean sd IQR 0% 25% 50% 75% 100%

r(σNO= 1) 28.67 9.71 13.36 1.86 22.90 32.04 36.26 47.13
r(σNO= 3) 30.28 10.28 14.88 1.34 23.50 33.66 38.38 48.81
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Figure 3 ACF and PACF of the data set: with zeros (A and B) and without zeros (C and D).
Full-size DOI: 10.7717/peerjcs.298/fig-3

Table 6 Descriptive statistical indicators for the daily demand data set.

Dataset min max mean median sd CV CS CK n

With zeros 0 31 14.6 18 9.78 0.67 −0.54 −1.18 180
Without zeros 9 31 20.21 20 4.18 0.21 0.058 −0.05 130

every certain number of periods (10-day lag). In any case, the autocorrelation and partial
autocorrelation was negligible.

Table 6 shows the size, minimum and maximum values, mean, median, sd, coefficient
of variation (CV), coefficient of skewness (CS), and coefficient of kurtosis (CK) of the
daily demand data set. The raw data of ‘Analyzing real data using an illustrative example’
is available to readers in supplemental files.

Figure 4 shows an empirical quantile–quantile plot to confirm the good standing of
our proposed statistical distribution ZITNO DPUT model. Quantile–quantile plot is a
graphical method for comparing two probability distributions by plotting their quantiles
against each other. In this case, the proposed theoretical distribution (ZITNO) is compared
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Figure 4 Quantile–quantile plot for statistical distribution proposal.
Full-size DOI: 10.7717/peerjcs.298/fig-4

Table 7 Parameters of the proposed statistical distribution to model DPUT and LTD and its competi-
tors.

Statistical Modeling Parameters
Distribution Random

variable

ZITNO DPUT µNO= 14.6 unit/day, σNO= 9.78 unit/day, ν= 0.3
Simple exponential
smoothing

DPUT µSES= 14.61 unit/day, σSES= 9.75 unit/day

Croston’s DPUT µCROST = 15.35 unit/day, σCROST = 10.12 unit/day
ZITNOsum LTD µNOµK = 29.2 unit/day, σZITNO

√
µK = 18.83 unit/day, νs=

0.1
Simple exponential
smoothing sum

LTD µSESµK = 29.22 unit/day, σSES
√
µK = 13.78 unit/day

Croston’s sum LTD µCROSTµK = 30.7 unit/day, σCROST
√
µK = 14.31 unit/day

with respect to the empirical distribution, where the points should ideally approach a
diagonal line. Since all values were within confidence bands, we propose that the statistical
distribution correctly fits the data.

Table 7 shows the parameters calculated using our proposed statistical distribution and
its competitors.

Proposed statistical distribution inventory model performance. We considered the
following costs involved in the application of a Q,r inventory model with shortage: HC=
0,042 USD$/(unit*year), OC= 0,86 USD$/order, SC= 0,33 USD$/cycle, and constant LTD
= 2 days. Table 8 shows the performance measures relative to Q*, r, TC, S (r), Fill-rate, and
Kullback–Leibler divergence when applying an Q,r inventory model with shortage and the
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Table 8 Q,r model with shortage performance measures using the proposed statistical distribution to model DPUT/LTD.

Modeling Q* r TC S(r) (quantity Fill-rate Kullback–Leibler
DPUT/LTD (unit) (unit) (USD) of shortage/

cycle)
divergence

ZITNO/ ZITNOsum 1,147 32 393.82 0 1 0.78
Simple exponential
smoothing / Simple
exponential smoothing sum

1,372 35 468.34 0 1 0.82

Croston’s /Croston’s sum 1,406 36 480.05 0 1 0.80

proposed statistical distributions for the DPUT/LTD modeling. Note that all performance
measures using ZITNO/ZITNOsum favored our intermittent demand model.

DISCUSSION
We adapted our Algorithm 1 from (Willemain, Smart & Schwarz, 2004), for the use of
ZITNO and ZITNOsum distributions to model DPUT and LTD, respectively.

Our model optimizing of the annual total cost of expected inventory with shortage
results in lower total costs and smaller shortages per cycle in almost all cases compared
to traditional methods used to model intermittent demand such as simple exponential
smoothing and its variant, Croston’s method. Table 3 shows that the ZITNO/ZITNOsum
statistical distribution method performs better than the traditional slow-moving inventory
models when modeling intermittent DPUT and LTD. Here, we must acknowledge that the
standardmethods also achieved good Fill-rate with a satisfaction of the DPUT. However, in
most cases, our proposal achieved lower total costs and smaller non-supplied quantities than
traditional methods. Our proposed method was effective regardless of the number of zeros
contained in the DPUT data samples. The simple exponential smoothing and Croston’s
method approaches have been extensively employed in intermittent demand forecasting
(Balugani et al., 2019). However, they lack the properties of a statistical distribution, so
they generally show low performance measures when used in stochastic inventory models,
such as the one studied in this work.

Once we confirmed that the ZITNO statistical distribution achieved good yields in
the considered inventory model, we studied how the parameter of variability and the
proportion of zeros that defined this statistical distribution affected total costs, Q and r
decisions, and possible connections. The most important relationship found was between
the proportion of zeros in DPUT, which shows the degree of intermittency of this variable,
the square root of this same parameter and the reorder point decisions. This relationships
were explained by a multiple linear regression model. At first glance, the low intermittency
of DPUT has a positive proportionality related with the square root of the parameter
of proportion of zeros in demand (

√
ν), and later it suffers a decay by increasing the

intermittency of the DPUT (ν). This behavior is important to decision-makers that need to
consider the degree of DPUT intermittency for their reorder point decisions.We confirmed
that the parameter of variability of the ZITNO statistical distribution positively correlated
with reorder point decisions. That is, as the variability of the non-zero DPUT increases, the
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reorder points must also increase. The previous conclusion was logical since this indicator
can protect shortages against scenarios of greater variability. However, it does not alter the
ordered quantities or the total costs of the inventory policy.

In our study, we looked at actual data from a real case study to corroborate our method’s
performance.

We think that the use of ZITNO statistical distribution is especially suitable for
intermittent demand due to its capability for modeling non-zero and zero demand cases.
We tested our method by calculating indicated statistical distribution, and achieved good
LTD distribution adjustment results. We also obtained good results when the non-zero
data were slightly asymmetrical and when the zero values of the DPUT showed a high
proportion. Our main objective was to create models as close to reality as possible, but we
acknowledge that this topic of study is an area of ongoing research that needmore empirical
results in future research. In this context, it is necessary to study the adaptation to skewness
and kurtosis of the non-zero data of an intermittent demand in diverse stochastic inventory
models, for this and other mixture statistical distributions, because these characteristics of
the probability distributions could directly affect the results obtained in r and S(r).

Another important limitation to point out is that the busy optimization method is
for each item or product in a particular way. For this reason, it would be important
to consider multi-product stochastic programming in future research considering our
proposed ZITNO and ZITNOsum statistical distributions. In the future, we plan to address
some limitations shown in this study, such as the assumption of constant LT, which we
used to model the LTD as a sum of DPUT.

CONCLUSION
In this paper, we developed a new methodological framework for intermittent demand
modeling.

We were able to generate an LTD jitter in the case of an intermittent DPUT. We used
numerical experiments to show that our proposed statistical distributions ZITNO and
ZITNOsum leads to better results in a continuous revision inventory model with shortage.
In particular, we used the multi-criteria TOPSIS method across multiple scenarios with
different proportions of zeros in the DPUT and cost of ordering, storing, and shortage
parameters.

In slow-moving items modeled by our proposal of statistical distribution, decisions Q
and r are affected by the level of intermittent demand. Both decrease but not proportionally
in the case of the decision of r , because the proportion of zeros in the DPUT is a parameter
that affects the variability of the LTD.
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